

|. Overview

This document describes the display sub-system of Panther, a high performance game
machine based on the Motorola 68000 microprocessor. This document does not cover the
sound processor or the /O capabilities.

The display is generated by an object list processor. For each display line, a list of objects
is executed by this processor and used to build that display line in an internal buffer. The
objects in the list may specify bit-map images or run-length encoded images. Other
objects in the list provide a variety of useful functions. This mechanism allows a ‘sprite’
based display to be generated, with considerable flexibility. The object list processor can
also perform hardware scaling on bit-map data.

The number of sprites is limited only by the number of objects that can be processed in
one video line. To enhance the performance of the object list processor, the system
contains 32-bit wide fast static RAM, from which the object list is read by the object list
processor.

Il. Object List Processor

A. Overview

Everything visible on the screen, with the exception of the border and initialized
background, is an object. Objects are of variable size and have a data format described
by an object header. Each object on the screen has a unigue object header, although two
or more objects may share the same data. The object header also specifies the position of
the object and an offset into the color palette.

The display is built into the line buffer, on a line-by-line basis, by the object list processor.
Each line is built while the previous line is being displayed, so this building process must be
completed during one display line.

The object list processor acquires the bus and starts executing the object list from the
address given by the OLP register automatically. It will continue to execute objects from
the list until an interrupt object is executed.

Object headers are a whole number of longwords in length and are stored in the object list,
which must lie in 32-bit RAM on a longword boundary. Objects are painted in the order
they appear in the object list. The first object therefore has the lowest priority (usually the
background), and the last object has the highest priority. Object headers form a linked list,
with a link address pointing to the next object, with the exception of the memory move
objects which are executed sequentially as they contain no link (for faster execution). A
branch object performs no action other than to provide a link address.

The first object header in the object list (OL) is pointed to by the object list pointer register
(OLP) in the object list processor. This register is word wide and specifies the offset in
longwords into BAM. That is:

OL address = OLP * 4

In addition to objects used to display data, there are special objects which can be used to
manipulate data in memory in a way that is synchronized with the display. These may be
used for such tasks as modifying the object list itself or changing the palette.

B. Objects

Objects are specified by object headers. The first byte of the header specifies the object
type. The meaning of the remaining bits depends on the object type.

Objects are made up from one or mare longwords, which must lie on longword boundaries.
The diagrams below show how the data is arranged within these longwords, for the
different object types.

1. Scaled bit-mapped object (0x01 - 0x7F)

Sl 24 23 oS 8 7 0
| type 0x01-0x7¢| ¥ position | v size |2ldepthl
| v seale Daancdy BNELGRTTE
| data width | drawn width | X position |
| palette | data address IRl

Object type is a byte specifying the type of object, 0x20 for bit-mapped object
with no scaling (see discussion below).

Y position is a byte in the range 0-199 specifying the top line of the object
(register VDB specifies where line zero falls).
Y size is an eight bit integer with a five bit fraction, which specifies the

‘data height' of the object. This is decremented by Y scale on every
display line, and must be initialised every field. When this is
decremented past zero the value zero is written back to the object,
and this indicates that the object data has been exhausted.

? is an unused bit.
Depth is a two bit field which specifies the number of data bits per pixel.
0 =1 bit, 1 =2 bits, 2 = 4 bits, 3 = 8 bits.
Y scale is a five bit integer with a five bit fraction which determines the vertical

scaling. The data address is advanced by Y scale data lines for every one

display line. This humber stored is the reciprocal of the vertical scaling
factor.

For bit-mapped objects the processor then starts reading display data and computing the
write-back data. The display data is either word wide (from ROM) or longword wide (from
RAM). The display data is turned into pixels at one pixel per clock cycle while the next
word/longword of data is being fetched. Pixel color is represented by 1,2,4 or 8 bits. Except
In the case of 8hit pixels from ROM the number of clock cycles equals the number of
pixels. If a pixel has logical color zero it is deemed transparent and is not written into the
line buffer but still takes one clock cycle.

The write-back values consist of the new Y size and the new data address. The new data
address is formed by (repeatedly) adding the data width to the data address. If an object is
reduced in size then lines of pixel data must be skipped. Usually the write-back values are
ready when all the pixels have been written. If a narrow object has been scaled down
considerably then the object processor may have to wait for the write-back value before
proceeding to the next object.

For run-length objects the object processor reads either a word or a longword from the
data address. This contains the length of the run- length data (including itself). The object
processor then reads the length-color data and writes the runs into the line buffer. If the
data comes from ROM runs are generated every four cycles. If the data comes from RAM
runs are generated every clock cycle. There is a delay between reading the data length
and reading the data. If the run is expanded forwards this delay is one cycle, if backwards
the delay is two cycles.

Objects waste object processor time if they are read when they are not active on the
current line. This is especially wasteful for the group of objects which are used once per
field to reset the other objects. This inefficiency can be avoided by using a branch to reach
seldom used groups of objects.

If a bit-mapped object has a negative X position (to the left of the screen) the object
processor reads all the object data until the data falls within the screen then this data is
written into the line buffer. Previous data is ignored. This clipping is wasteful especially if
the image is large and mostly (or completely) off screen. The waste can be avoided if the
68000 increases the data address and X position and decreases the drawn width by
corresponding amounts. No more than a word or longword of pixels need be wasted.

Clipping on the right hand edge of the screen is not inefficient because the object
processor stops processing and moves onto the next object when pixels run off the screen.
If the bit-mapped image is reversed then clipping on the left is efficient and clipping on the
right is not but can be remedied as above.

Run-length objects can suffer from the same sort of inefficiency but the problem cannot be
alleviated in the same way. Instead the 68000 should arrange that run length images are
never very wide (no wider than the screen) and that the run is expanded from the end
which is on the screen. If, for instance, a run length object has a negative X coordinate
then it should be drawn backwards and reflected at an X coordinate corresponding to the
right hand edge of the image.

IIl. Programmable Display Generator

The programmable display generator produces all display related timing. It allows the
programmer to select NTSC or PAL, the absolute screen position, and number of active
lines per screen. All of these parameters can be modified on a frame by frame basis if
desired.

The display generator has two timing generators, horizontal and vertical. Each is
controlled by a set of registers giving Period, Sync Start, Border Start, Border Stop,
Display Start, and Display Stop. The table below gives typical values for NTSC and PAL.
Horizontal times are specified in pixels and vertical times are specified in lines. They must
be set to the correct value for either NTSC or PAL in order for ordinary television sets to
operate properly. Note that there is no horizontal display end register, the display width is
fixed (at 320 pixels).

A one bit register (SMODE) allows the programmer to find out the television system for
which the machine is configured (0=NTSC, 1=PAL).

|IDisplay values|Horizontal | Vertical |
I |name INTSCIPAL |namel|NTSc|pPAL |

Period lup [480	480	vp	260 [312		
syne start	lHs	450	450	vs 240 [292	
Border start	HBB	420	420	vBB	235 [287
Border stop	HBE	30	30 [vBE	5	5
IDisplay Start	HDB	90	90 lvDe	25	25
IDisplay: Stop | | | vmES226 8 (205

The above harizontal parameters are proportional to the crystal frequency; which the table
assumes to be 30MHz.

When the machine is powered up, the programmable display generator and the display
processor are disabled. The display generator should be set up for the correct television
system, the display processor should be set up with a valid object list (see following
sections) and then the video subsystem should be enabled by writing a one to VIDEN.

Bit zero of VIDEN controls sync and display processing (1=enable). Bit one can be used
to disable the object list processing (1=enable), the screen will display the background
color while this is disabled.

The display start registers (HDB and VDB) serve several purposes:

- They indicate the beginning of the active portion of the screen.
- They are the base count from which actual screen positions are measured.

loyile . 1L
bit 14
bit 15

EFBO0O

EEE01.2
EECO20

FFC030
ERE0S2
FFC034
FFC036

BEEU3E
FFC03A
BECOUSE
FFCO3E

FEECOEQ

FFC100
ERC102
FFC104
FFC106
FFC108
FFC10A
EFCl0C
FFC10E

FEC110
EEREIN
FFCl114
BEECIGE
FECL18
HECLIE
HEE AT
EREI2

FFC122
FFCcl24
BEE1Z26
EECL28

contreller 1 pin 13
contreller 1 pin 12
controller 1 pin 1

- FFBOFF

RKRHXK XKEK XXX XHARX
x000 0000 000x xxxx

——XX
——xX
= OIS
= XX

——XX
= —XX
—— XX
= X
R
——XX
—— XX
- XX

- XX
—— XX
——XX
—— XX
——XX
==
= 20

RHEXX
AXXXH
HRXK
P 99,04

HHEXX
XXX
HKARXX
HAHXXK

XXXX
RAXX
HAAXXK
KAARK
XAXX
XAXX
HHXR
HKXAX

XXRXX
XXXX
b16:6.0¢
KRXK
XXHX
b16:0:07¢
XKXX
0000

HEXX
HARXX
HRHX
XXXX

HXXX
HKRAKX
XXXX
KARXX

=

HEXX
HEXX
HqXXX
HEXX
XXXX
HXAXX
KKXX
HKAXX

HKRKK
5:9:0,0:4
HRKK
H:6.0.0:4
HXRHK
5:620:6:4
:0:0:024
00xx

The palette and line buffer
wide cycles.

FFDO0O1
FEDO02

00xx xxxx
00xx XXX

ro
ro
ro
ro

ro
ro
ro
ro

ro

rw
rw
r'w
EW
rw
rw
rw
ro

rw
rw
rw
rw
rw
rw
ro
rw

rw
ro
ro
ro

Sound generator registers

rw OBPNTR Object list pointer

rw BINIT Line

PADOX
PADOY
PAD1X
PAD1Y

LPOX
LPOY
LP1X
Ry

VMODE

VP
VS
VEB
VBE
VDB
VDE
VI
VCP

HP

HS
HBB
HBE
HDB
HI
HCP
VIDEN

TESTI
RIS
TEST3
TEST4

Paddle
Paddle

Paddle

Light Pen
Light Pen
Light Pen
Light Pen

0 X
0 %
Paddle 1 X
il 5%

== i)

buffer initial wvalue

position
position
position
position

X position
Y position
X position
Y position

Display mode (NTISC v PAL)

Vertical period

Vertical sync start
Vertical blank start
Vertical blank stop
Vertical display start
Vertical display stop
Vertical interrupt
Vertical current position

Horizontal
Horizontal
Horizontal
Horizontal
Horizontal
Horizontal
Horizontal

period

sync start

blank start
blank stop
display start
interrupt
current position

Video enable

Manufacturing test only
Manufacturing test only
Manufacturing test only
Manufacturing test only

locations may only be accessed in byte

rw PALETTE

rw

Palette = ERtey (- ="Red
Palette - Entry 0 - Green

