
Last updated 27 May 2002

PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

SH-4 CPU Core
Architecture

4
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

SuperH, Inc. Confidential

This publication contains proprietary information of SuperH, Inc., and is not to be copied in whole or part.

Issued by the SuperH Documentation Group on behalf of SuperH, Inc.

Information furnished is believed to be accurate and reliable. However, SuperH, Inc. assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of SuperH, Inc. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information

previously supplied. SuperH, Inc. products are not authorized for use as critical components in life support devices or
systems without the express written approval of SuperH, Inc.

 is a registered trademark of SuperH, Inc.

SuperH is a registered trademark for products originally developed by Hitachi, Ltd. and is owned by Hitachi
Ltd.

© 2000, 2001, 2002 SuperH, Inc. All Rights Reserved.

SuperH, Inc.
San Jose, U.S.A. - Bristol, United Kingdom - Tokyo, Japan

www.superh.com

http://www.superh.com/

PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Contents

Preface 13

Document identification and control 13
Conventions used in this guide 15

1 Overview 17

1.1 SH-4 CPU core features 17
1.2 Block diagram 21

2 Programming model 23

2.1 General registers 24
2.2 System registers 27
2.3 Control registers 33
2.4 Floating-point registers 37
2.5 Memory-mapped registers 39
2.6 Data format in registers 40
2.7 Data formats in memory 40

6
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

2.8 Processor states 41
2.8.1 Reset state: 41
2.8.2 Exception-handling state: 41
2.8.3 Program execution state: 41
2.8.4 Power-down state: 42

2.9 Processor modes 43

3 Memory management unit (MMU) 45

3.1 Overview 45
3.2 Role of the MMU 45
3.3 Register descriptions 46

3.3.1 Page table entry high register (PTEH) 47
3.3.2 Page table entry low register (PTEL) 48
3.3.3 Translation table base register (TTB) 51
3.3.4 TLB exception address register (TEA) 51
3.3.5 MMU control register (MMUCR) 51

3.4 Address space 55
3.4.1 Physical address space 55
3.4.2 External memory space 56
3.4.3 Virtual address space 59
3.4.4 On-chip RAM space 60
3.4.5 Address translation 61
3.4.6 Single virtual memory mode and multiple virtual memory

mode 61
3.4.7 Address space identifier (ASID) 62

3.5 TLB functions 62
3.5.1 Unified TLB (UTLB) configuration 62
3.5.2 Instruction TLB (ITLB) configuration 63
3.5.3 Address translation method 63

7
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

3.6 MMU functions 66
3.6.1 MMU hardware management 66
3.6.2 MMU software management 66
3.6.3 MMU instruction (LDTLB) 67
3.6.4 Hardware ITLB miss handling 68
3.6.5 Avoiding synonym problems 68

3.7 Handling MMU exceptions 69
3.7.1 ITLBMULTIHIT 69
3.7.2 ITLBMISS 69
3.7.3 EXECPROT 70
3.7.4 OTLBMULTIHIT 71
3.7.5 TLBMISS 71
3.7.6 READPROT 72
3.7.7 FIRSTWRITE 72

3.8 Memory-mapped TLB configuration 73
3.8.1 ITLB address array 74
3.8.2 ITLB data array 1 75
3.8.3 UTLB address array 76
3.8.4 UTLB data array 1 78

4 Caches 79

4.1 Overview 79
4.1.1 Features 79

4.2 Register descriptions 81
4.2.1 Cache control register (CCR) 81
4.2.2 Queue address control register 0 (QACR0) 84
4.2.3 Queue address control register 1 (QACR1) 85

4.3 Operand cache (OC) 86
4.3.1 Configuration 86
4.3.2 Read operation 88
4.3.3 Write operation 90
4.3.4 Write-back buffer 92

8
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

4.3.5 Write-through buffer 92
4.3.6 RAM mode 92
4.3.7 OC index mode 95
4.3.8 Coherency between cache and external memory 95
4.3.9 Prefetch operation 95

4.4 Instruction cache (IC) 96
4.4.1 Configuration 96
4.4.2 Read operation 98
4.4.3 IC index mode 99

4.5 Memory-mapped cache configuration 99
4.5.1 IC address array 99
4.5.4 IC data array 101
4.5.5 OC address array 102
4.5.6 OC data array 103

4.6 Store queues 105
4.6.1 SQ configuration 105
4.6.2 SQ writes 106
4.6.3 SQ reads (SH4-202 only) 106
4.6.4 Transfer to external memory 106

5 Exceptions 109

5.1 Overview 109
5.2 Register descriptions 109

5.2.1 Exception event register (EXPEVT) 110
5.2.2 Interrupt event register (INTEVT) 110
5.2.3 TRAPA exception register (TRA) 111

5.3 Exception handling functions 112
5.3.1 Exception handling flow 112
5.3.2 Exception handling vector addresses 112

5.4 Exception types and priorities 113

9
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

5.5 Exception flow 114
5.5.1 Exception flow 114
5.5.2 Exception source acceptance 116
5.5.3 Exception requests and BL bit 118
5.5.4 Return from exception handling 118

5.6 Description of exceptions 119
5.6.1 Resets 119
5.6.2 General exceptions 124
5.6.3 Interrupts 142
5.6.4 Priority order with multiple exceptions 145

5.7 Usage notes 146

6 Floating-point unit 149

6.1 Overview 149
6.2 Floating-point format 150

6.2.1 Non-numbers (NaN) 152
6.2.2 Denormalized numbers 153

6.3 Rounding 153
6.4 Floating-point exceptions 154
6.5 Graphics support functions 156

6.5.1 Geometric operation instructions 156
6.5.2 Pair single-precision data transfer 158

7 Instruction set 159

7.1 Execution environment 159
7.2 Addressing modes 162
7.3 Instruction set summary 167

10
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

8 Instruction specification 183

8.1 Overview 183
8.2 Variables and types 184

8.2.1 Integer 184
8.2.2 Boolean 185
8.2.3 Bit-fields 185
8.2.4 Arrays 185
8.2.5 Floating point values 186

8.3 Expressions 186
8.3.1 Integer arithmetic operators 186
8.3.2 Integer shift operators 188
8.3.3 Integer bitwise operators 188
8.3.4 Relational operators 190
8.3.5 Boolean operators 190
8.3.6 Single-value functions 191

8.4 Statements 194
8.4.1 Undefined behavior 194
8.4.2 Assignment 194
8.4.3 Conditional 196
8.4.4 Repetition 196
8.4.5 Exceptions 197
8.4.6 Procedures 197

8.5 Architectural state 198
8.6 Memory model 200

8.6.1 Support functions 201
8.6.2 Reading memory 202
8.6.3 Prefetching memory 204
8.6.4 Writing memory 204

8.7 Cache model 206

11
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

8.8 Floating-point model 206
8.8.1 Functions to access SR and FPSCR 206
8.8.2 Functions to model floating-point behavior 208
8.8.3 Floating-point special cases and exceptions 210

8.9 Abstract sequential model 210
8.9.1 Initial conditions 211
8.9.2 Instruction execution loop 211
8.9.3 State changes 212

8.10 Example instructions 213
8.10.1 ADD #imm, Rn 213
8.10.2 FADD FRm, FRn 215

9 Instruction descriptions 217

9.1 Alphabetical list of instructions 217

10 Pipelining 487

10.1 Pipelines 487
10.2 Parallel-executability 494
10.3 Execution cycles and pipeline stalling 498

A Address list 517

B Instruction prefetch side effects 519

Index 521

12
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Preface

This document is part of the SuperH Documentation Suite detailed below.
Comments on this or other manuals in the SuperH Documentation Suite should be
made by contacting your local SuperH Sales Office or distributor.

SuperH SH-4 document identification and
control
Each book in the documentation suite carries a unique identifier in the form:

05-CC-nnnnn Vx.x

Where, n is the document number and x.x is the revision.

Whenever making comments on a SuperH SH-5 document the complete
identification 05-CC-1000n Vx.x should be quoted.

14
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Conventions used in this guide

General notation

The notation in this document uses the following conventions:

• Sample code, keyboard input and file names,

• Variables and code variables,

• Equations and math,

• Screens, windows and dialog boxes,

• Instructions.

Hardware notation

The following conventions are used for hardware notation:

• REGISTER NAMES and FIELD NAMES,

• PIN NAMES and SIGNAL NAMES.

Software notation

Syntax definitions are presented in a modified Backus-Naur Form (BNF). Briefly:

1 Terminal strings of the language, that is those not built up by rules of the
language, are printed in teletype font. For example, void.

2 Nonterminal strings of the language, that is those built up by rules of the
language, are printed in italic teletype font. For example, name.

3 If a nonterminal string of the language starts with a nonitalicized part, it is
equivalent to the same nonterminal string without that nonitalicized part. For
example, vspace-name.

4 Each phrase definition is built up using a double colon and an equals sign to
separate the two sides.

5 Alternatives are separated by vertical bars (‘|’).

6 Optional sequences are enclosed in square brackets (‘[’ and ‘]’).

7 Items which may be repeated appear in braces (‘{’ and ‘}’).

PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

1Overview

1.1 SH-4 CPU core features
This manual describes the architecture of the SH-4 CPU core. The core is a highly
encapsulated design component that can be integrated into any product, you will
therefore find no references to clock speeds, system facilities, pin-outs or similar
data in this manual. For this information you are referred to the Datasheet and/or
System Architecture Manual of the appropriate product.

The SH-4 is a 32-bit RISC (reduced instruction set computer) microprocessor,
featuring object code upward-compatibility with Hitachi SuperH SH-1, SH-2, SH-3,
and SH-3E microcomputers. It includes an instruction cache, a operand cache that
can be switched between copy-back and write-through modes, a 4-entry
full-associative instruction TLB (table look aside buffer), and MMU (memory
management unit) with 64-entry full-associative shared TLB.

The SH-4’s 16-bit fixed-length instruction set enables program code size to be
reduced by almost 50% compared with 32-bit instructions.

The SH4-202 variant includes two way set associative instrustion and operand
cache (rather than direct mapped as for the SH-4 100 series). In particular, the
SH4-202 has a 32 Kbyte 2-way operand cache and a 16 Kbyte 2-way instruction
cache.

18 SH-4 CPU core features
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

The features of the SH-4 CPU core are summarized as follows:

CPU

• Original Hitachi SH architecture

• 32-bit internal data bus

• General register file:

- Sixteen 32-bit general registers (and eight 32-bit shadow registers)

- Seven 32-bit control registers

- Four 32-bit system registers

• RISC-type instruction set (upward-compatible with SH Series)

- Fixed 16-bit instruction length for improved code efficiency

- Load-store architecture

- Delayed branch instructions

- Conditional execution

• Superscalar architecture: Parallel execution of two instructions

• C-based instruction set (providing simultaneous execution of two instructions)
including FPU

• Instruction execution time: Maximum 2 instructions/cycle

• Virtual address space: 4 Gbytes (448-Mbyte external memory space)

• Space identifier ASIDs: 8 bits, 256 virtual address spaces

• On-chip multiplier

• Five-stage pipeline

FPU

• On-chip floating-point coprocessor

• Supports single-precision (32 bits) and double-precision (64 bits)

• Supports IEEE754-compliant data types and exceptions

• Two rounding modes: Round to Nearest and Round to Zero

• Handling of denormalized numbers: Truncation to zero or interrupt generation
for compliance with IEEE754

• Floating-point registers: 32 bits x 16 words x 2 banks (single-precision x 16
words or double-precision x 8 words) x 2 banks

SH-4 CPU core features 19
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

• 32-bit CPU-FPU floating-point communication register (FPUL)

• Supports FMAC (multiply-and-accumulate) instruction

• Supports FDIV (divide) and FSQRT (square root) instructions

• Supports FLDI0/FLDI1 (load constant 0/1) instructions

• Instruction execution times

- Latency (FMAC/FADD/FSUB/FMUL): 3 cycles (single-precision), 8 cycles
(double-precision)

- Pitch (FMAC/FADD/FSUB/FMUL): 1 cycle (single-precision), 6 cycles
(double-precision)

- Note: FMAC is supported for single-precision only.

• 3-D graphics instructions (single-precision only):

- 4-dimensional vector conversion and matrix operations (FTRV): 4 cycles
(pitch), 7 cycles (latency)

- 4-dimensional vector (FIPR) inner product: 1 cycle (pitch), 4 cycles (latency)

• Five-stage pipeline

Power-down

• Power-down modes

- Sleep mode

- Standby mode

- Module standby function

MMU

• 4-Gbyte address space, 256 address space identifiers (8-bit ASIDs)

• Single virtual mode and multiple virtual memory mode

• Supports multiple page sizes: 1 kbyte, 4 kbytes, 64 kbytes, 1 Mbyte

• 4-entry fully-associative TLB for instructions

• 64-entry fully-associative TLB for instructions and operands

• Supports software-controlled replacement and random-counter replacement
algorithm

• TLB contents can be accessed directly by address mapping

20 SH-4 CPU core features
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Cache memory

SH4-103

• Instruction cache (IC)

- 8 kbytes, direct mapping

- 256 entries, 32-byte block length

- Normal mode (8-kbyte cache)

- Index mode

• Operand cache (OC)

- 16 kbytes, direct mapping

- 512 entries, 32-byte block length

- Normal mode (16-kbyte cache)

- Index mode

- RAM mode (8-kbyte cache + 8-kbyte
RAM)

- Choice of write method (copy-back or
write-through)

• Single-stage copy-back buffer,
single-stage write-through buffer

• Cache memory contents can be accessed
directly by address mapping (usable as
on-chip memory)

• Store queue (32 bytes x 2 entries)

 SH4-202

• Instruction cache (IC):

- 16 Kbyte 2-way set associative

- 512 entries with 32 bytes per block

- Compatibility mode (8 Kbyte direct
mapped)

- Index mode

• - Operand cache (OC)

- 32 Kbyte 2-way set associative

- 1024 entries with 32 bytes per block

- Compatibility mode (16 Kbyte direct
mapped)

- Index mode

- RAM mode (16 Kbyte cache + 16
Kbyte RAM)

- Copyback and write through modes

Block diagram 21
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

1.2 Block diagram
Figure 1 shows an internal block diagram of the SH-4 32-Bit CPU Core .

Figure 1 SH-4 32-Bit CPU core

CCN: Cache and TLB controller
FPU: Floating point unit
ITLB: Instruction Translation

lookaside buffer
UTLB: Unified Translation

lookaside buffer

CPU FPU

O CacheUTLBCCNITLBI cache

A
dd

re
ss

 (
in

st
ru

ct
io

n)

D
at

a
(in

st
ru

ct
io

n)

A
dd

re
ss

 (
da

ta
)

D
at

a
(lo

ad
)

D
at

a
(s

to
re

)

D
at

a
(s

to
re

)

D
at

a
(s

to
re

)Lower data

Lower data

22 Block diagram
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

2Programming
model

The SH-4 CPU core has two processor modes, user mode and privileged mode. The
SH-4 normally operates in user mode, and switches to privileged mode when an
exception occurs, or an interrupt is accepted.

There are four kinds of registers:

• general registers

There are 16 general registers, R0 to R15. General registers R0 to R7 are banked
registers which are switched by a processor mode change.

• system registers

Access to these registers does not depend on the processor mode.

• control registers

• floating-point registers

There are thirty-two floating-point registers, FR0–FR15 and XF0–XF15.
FR0–FR15 and XF0–XF15 can be assigned to either of two banks
(FPR0_BANK0–FPR15_BANK0 or FPR0_BANK1–FPR15_BANK1).

The registers that can be accessed differ in the two processor modes.

24 General registers
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Register values after a reset are shown in Table 1.

2.1 General registers
Figure 2 shows the relationship between the processor modes and the general
registers. The SH-4 CPU core has twenty-four 32-bit general registers
(R0_BANK0–R7_BANK0, R0_BANK1–R7_BANK1, and R8–R15). However, only 16
of these can be accessed as general registers, R0–R15, in either processor mode. The
assignment of R0–R7, in both modes, is shown below.

• R0_BANK0–R7_BANK0

In user mode (SR.MD = 0), R0–R7 are always assigned to
R0_BANK0–R7_BANK0.

In privileged mode (SR.MD = 1), R0–R7 are assigned to R0_BANK0–R7_BANK0
only when SR.RB = 0.

Type Registers Initial valuea

General registers R0_BANK0–R7_BANK0,
R0_BANK1–R7_BAN K1,
R8–R15

Undefined

Control registers SR MD bit = 1, RB bit = 1, BL bit = 1, FD bit = 0, I3–I0
= 1111 (0xF), reserved bits = 0, others undefined

GBR, SSR, SPC, SGR,
DBR

Undefined

VBR 0x00000000

System registers MACH, MACL, PR, FPUL Undefined

PC 0xA0000000

FPSCR 0x00040001

Floating-point reg-
isters

FR0–FR15, XF0–XF15 Undefined

Table 1: Initial register values

a. Initialized by a power-on reset and manual reset

General registers 25
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

• R0_BANK1–R7_BANK1

In user mode, R0_BANK1–R7_BANK1 cannot be accessed.

In privileged mode, R0–R7 are assigned to R0_BANK1–R7_BANK1 only when
SR.RB = 1.

Figure 2: General registers

SR.MD = 0 or
(SR.MD = 1, SR.RB = 0)

R0_BANK0
R1_BANK0
R2_BANK0
R3_BANK0
R4_BANK0
R5_BANK0
R6_BANK0
R7_BANK0

R0_BANK0
R1_BANK0
R2_BANK0
R3_BANK0
R4_BANK0
R5_BANK0
R6_BANK0
R7_BANK0

R0_BANK1
R1_BANK1
R2_BANK1
R3_BANK1
R4_BANK1
R5_BANK1
R6_BANK1
R7_BANK1

R0_BANK1
R1_BANK1
R2_BANK1
R3_BANK1
R4_BANK1
R5_BANK1
R6_BANK1
R7_BANK1

R0
R1
R2
R3
R4
R5
R6
R7

R0
R1
R2
R3
R4
R5
R6
R7

R8
R9
R10
R11
R12
R13
R14
R15

R8
R9

R10
R11
R12
R13
R14
R15

R8
R9

R10
R11
R12
R13
R14
R15

(SR.MD = 1, SR.RB = 1)

26 General registers
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Programming Note:

As the user’s R0–R7 are assigned to R0_BANK0–R7_BANK0, and after an exception
or interrupt R0–R7 are assigned to R0_BANK1–R7_BANK1, it is not necessary for
the interrupt handler to save and restore the user’s R0–R7
(R0_BANK0–R7_BANK0).

After a reset, the values of R0_BANK0–R7_BANK0, R0_BANK1–R7_BANK1, and
R8–R15 are undefined.

System registers 27
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

2.2 System registers

Name Size Initial value Synopsis

MACH 32 Undefined Multiply-and-accumulate register high

Operation MACH is used for the added value in a MAC instruction, and to
store a MAC instruction or MUL instruction operation result.

MACL 32 Undefined Multiply-and-accumulate register low

Operation MACL is used for the added value in a MAC instruction, and to
store a MAC instruction or MUL instruction operation result.

PR 32 Undefined Procedure register

Operation The return address is stored when a subroutine call using a
BSR, BSRF or JSR instruction. PR is referenced by the subrou-
tine return instruction (RTS).

PC 32 0xA000 0000 Program counter

Operation PC indicates the executing instruction address.

FPSCR 32 0x0004 0001 Floating-point status/control register

Operation Refer to table 4: FPSCR

FPUL 32 undefined Floating-point communication register

Operation Data transfer between FPU registers and CPU registers is car-
ried out via the FPUL register. The FPUL register is a system
register, and is accessed from the CPU side by means of LDS
and STS instructions. For example, to convert the integer stored
in general register R1 to a single-precision floating-point num-
ber, the processing flow is as follows:

R1 → (LDS instruction) → FPUL → (single-precision FLOAT
instruction) → FR1

Table 2: System registers

28 System registers
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FPSCR

Field Bits Size Synopsis Type

RM [0,1] 2 Rounding mode. RW

Operation RM = 00 : Round to Nearest.

RM = 01 : Round to Zero.

RM = 10 : Reserved.

RM = 11 : Reserved.

For details see Section 6.3: Rounding

Power-on reset 1

Flag inexact 2 1 FPU inexact exception flag. RW

Operation Set to 1 if Inexact exception occurs.

Power-on reset 0

Flag underflow 3 1 FPU underflow exception flag. RW

Operation Set to 1 if Underflow exception occurs

Power-on reset 0

Flag overflow 4 1 FPU overflow exception flag. RW

Operation Set to 1 if overflow exception occurs

Power-on reset 0

Flag division by
zero

5 1 FPU division by zero exception flag. RW

Operation Set to 1 if division by zero exception occurs

Power-on reset 0

Flag invalid opera-
tion

6 1 FPU invalid operation exception flag. RW

Operation Set to 1 if Invalid operation exception occurs

Power-on reset 0

Table 3: FPSCR register description

System registers 29
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Enable inexact 7 1 FPU invalid exception enable field. RW

Operation Set to 1 to cause a trap when an inexact exception occurs.

Power-on reset 0

Enable underflow 8 1 FPU underflow exception enable field. RW

Operation Set to 1 to cause a trap when an underflow exception
occurs.

Power-on reset 0

Enable overflow 9 1 FPU overflow exception enable field. RW

Operation Set to 1 to cause a trap when an overflow exception
occurs.

Power-on reset 0

Enable division
by zero

10 1 FPU division by zero exception enable field. RW

Operation Set to 1 to cause a trap when a division by zero exception
occurs.

Power-on reset 0

Enable invalid 11 1 FPU invalid exception enable field. RW

Operation Set to 1 to cause a trap when an Invalid exception occurs.

Power-on reset 0

 Cause inexact 12 1 FPU inexact exception cause field. RW

Operation Set to 0 before an FPU instruction is executed. Set to 1 if
an Inexact exception occurs.

Power-on reset 0

FPSCR

Field Bits Size Synopsis Type

Table 3: FPSCR register description

30 System registers
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Cause underflow 13 1 FPU underflow exception cause field. RW

Operation Set to 0 before an FPU instruction is executed. Set to 1 if
an underflow exception occurs.

Power-on reset 0

Cause overflow 14 1 FPU overflow exception cause field. RW

Operation Set to 0 before an FPU instruction is executed. Set to 1 if
an overflow exception occurs.

Power-on reset 0

Cause division by
zero

15 1 FPU division by zero exception cause field. RW

Operation Set to 0 before an FPU instruction is executed. Set to 1 if a
division by zero exception occurs.

Power-on reset 0

Cause invalid 16 1 FPU invalid exception cause field. RW

Operation Set to 0 before an FPU instruction is executed. Set to 1 if
an invalid exception occurs.

Power-on reset 0

Cause FPU error 17 1 FPU error exception cause field. RW

Operation Set to 0 before an FPU instruction is executed. Set to 1 if
an FPU error exception occurs.

Power-on reset 0

DN 18 1 Denormalization mode. RW

Operation DN = 0 : A denormalized number is treated as such.

DN = 1 : A denormalized number is treated as zero.

Power-on reset 0

FPSCR

Field Bits Size Synopsis Type

Table 3: FPSCR register description

System registers 31
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

PR 19 1 Precision mode. RW

Operation PR = 0 : Floating point instructions are executed as single
precision operations.

PR = 1 : Floating point instructions are executed as dou-
ble-precision operations (the result of instructions for
which double-precision is not supported is undefined).

Mode setting [SZ = 1, PR = 1] is reserved. FPU operation
results are undefined in this mode.

Power-on reset 1

SZ 20 1 Transfer size mode. RW

Operation SZ = 0 : The data size of the FMOV instruction is 32 bits.

SZ = 1 : The data size of the FMOV instruction is a 32-bit
register pair (64 bits).

Programming note:

When SZ = 1 and big endian mode is selected, FMOV can
be used for double-precision floating-point data load or
store operations. In little endian mode, two 32-bit data size
moves must be executed, with SZ = 0, to load or store a
double-precision floating-point number.

Power-on reset 0

FR 21 1 Floating-point register bank. RW

Operation FR = 0 : FPR0_BANK0-FPR15_BANK0 are assigned to
FR0-FR15; FPR0_BANK1-FPR15_BANK1 are assigned
to XF0-XF15.

FR = 1 : FPR0_BANK0-FPR15_BANK1 are assigned to
FR0-FR15.

Power-on reset 0

FPSCR

Field Bits Size Synopsis Type

Table 3: FPSCR register description

32 System registers
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

RES [22,31] 10 Bits reserved RW

Power-on reset Undefined

FPSCR

Field Bits Size Synopsis Type

Table 3: FPSCR register description

Control registers 33
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

2.3 Control registers

Name Size Initial value
Privilege
protection

Synopsis

SR 32 See table 6 for
individual bits.

Yes Status register

Operation Refer to table 6: SR

SSR 32 Undefined Yes Saved status register

Operation The current contents of SR are saved to SSR in the event of an
exception or interrupt.

SPC 32 Undefined Yes Saved program counter

Operation The address of an instruction at which an interrupt or exception
occurs is saved to SPC.

GBR 32 Undefined No Global base register

Operation GBR is referenced as the base address in a GBR-referencing
MOV instruction.

VBR 32 0x0000 0000 Yes Vector base register

Operation VBR is referenced as the branch destination base address in the
event of an exception or interrupt.

For details, see section 5, Exceptions.

SGR 32 Undefined Yes Saved general register

Operation The contents of R15 are saved to SGR in the event of an excep-
tion or interrupt.

DBR 32 undefined Yes Debug base register

Operation When the user break debug function is enabled (BRCR.UBDE =
1), DBR is referenced as the user break handler branch destina-
tion address instead of VBR.

Table 4: Control registers

34 Control registers
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Name Size Initial value
Privilege
protection

Synopsis

SR 32 See table 6 for
individual bits.

Yes Status register

Operation Refer to table 6: SR

SSR 32 Undefined Yes Saved status register

Operation The current contents of SR are saved to SSR in the event of an
exception or interrupt.

SPC 32 Undefined Yes Saved program counter

Operation The address of an instruction at which an interrupt or exception
occurs is saved to SPC.

GBR 32 Undefined No Global base register

Operation GBR is referenced as the base address in a GBR-referencing
MOV instruction.

VBR 32 0x0000 0000 Yes Vector base register

Operation VBR is referenced as the branch destination base address in the
event of an exception or interrupt.

For details, see section 5, Exceptions.

SGR 32 Undefined Yes Saved general register

Operation The contents of R15 are saved to SGR in the event of an excep-
tion or interrupt.

DBR 32 undefined Yes Debug base register

Operation When the user break debug function is enabled (BRCR.UBDE =
1), DBR is referenced as the user break handler branch destina-
tion address instead of VBR.

Table 5: Control registers

Control registers 35
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

SR

Field Bits Size Synopsis Type

 T 0 1 True/False condition or carry/borrow bit. RW

Operation Refer to individual instruction descriptions, which affect the T
bit.

Power-on reset Undefined

S 1 1 Specifies a saturation operation for a MAC instruction. RW

Operation Refer to individual instruction descriptions, which affect the S
bit.

Power-on reset Undefined

IMASK [4,7] 4 Interrupt mask level. RW

Operation External interrupts of a lower level than IMASK are masked.

Power-on reset 1

Q 8 1 State for divide step. RW

Operation Used by the DIV0S, DIV0U and DIV1 instructions.

Power-on reset Undefined

M 9 1 State for divide step. RW

Operation Used by the DIV0S, DIV0U and DIV1 instructions.

Power-on reset Undefined

FD 15 1 FPU disable bit (cleared to 0 by a reset). RW

Operation FD = 1 : An FPU instruction causes a general FPU disable
exception, and if the FPU instruction is in a delay slot, a slot
FPU disable exception is generated.

For further details see FPUDIS description in section Section
6.4: Floating-point exceptions

Power-on reset 0

Table 6: SR register description

36 Control registers
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

BL 28 1 Exception/interrupt block bit (set to 1 by a reset,
exception, or interrupt).

RW

Operation BL = 1 : Interrupt requests are masked. If a general exception,
other than a user break occurs while BL = 1, the processor
switches to the reset state.

Power-on reset 1

RB 29 1 General register bank specifier in privileged mode (set
to 1 by a reset, exception or interrupt).

RW

Operation RB = 0: R0_BANK0-R7_BANK0 are accessed as general regis-
ters R0-R7. (R0_BANK1-R7_BANK1 can be accessed using
LDC/STC R0_BANK-R7_BANK instructions.)

RB = 1: R0_BANK1-R7_BANK1 are accessed as general regis-
ters R0-R7. (R0_BANK0-R7_BANK0 can be accessed using
LDC/STC R0_BANK-R7_BANK instructions.)

Power-on reset 1

MD 30 1 Processor mode. RW

Operation MD = 0 : User mode (Some instructions cannot be executed,
and some resources cannot be accessed).

MD = 1 : Privileged mode.

Power-on reset 1

RES [2,3],
[10,14][
16,27]
31

20 Bits reserved RW

Power-on reset Undefined

SR

Field Bits Size Synopsis Type

Table 6: SR register description

Floating-point registers 37
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

2.4 Floating-point registers
Figure 3 shows the floating-point registers. There are thirty-two 32-bit
floating-point registers, divided into two banks (FPR0_BANK0–FPR15_BANK0 and
FPR0_BANK1–FPR15_BANK1). These 32 registers are referenced as FR0–FR15,
DR0/2/4/6/8/10/12/14, FV0/4/8/12, XF0–XF15, XD0/2/4/6/8/10/12/14, or XMTRX. The
correspondence between FPRn_BANKi and the reference name is determined by the
FR bit in FPSCR.

• Floating-point registers, FPRn_BANKi (32 registers)

• Single-precision floating-point registers, FRi (16 registers)

FPSCR.FR = 0 : FR0–FR15 are assigned to FPR0_BANK0–FPR15_BANK0.
FPSCR.FR = 1 : FR0–FR15 are assigned to FPR0_BANK1–FPR15_BANK1.

• Double-precision floating-point registers or single-precision floating-point
register pairs, DRi (8 registers): A DR register comprises two FR registers.

DR0 = {FR0, FR1}, DR2 = {FR2, FR3}, DR4 = {FR4, FR5}, DR6 = {FR6, FR7},

DR8 = {FR8, FR9}, DR10 = {FR10, FR11}, DR12 = {FR12, FR13},

DR14 = {FR14, FR15}

• Single-precision floating-point vector registers, FVi (4 registers): An FV register
comprises four FR registers

FV0 = {FR0, FR1, FR2, FR3}, FV4 = {FR4, FR5, FR6, FR7},

FV8 = {FR8, FR9, FR10, FR11}, FV12 = {FR12, FR13, FR14, FR15}

• Single-precision floating-point extended registers, XFi (16 registers)

FPSCR.FR = 0 : XF0-XF15 are assigned to FPR0_BANK1-FPR15_BANK1.

FPSCR.FR = 1 : XF0-XF15 are assigned to FPR0_BANK0-FPR15_BANK0.

• Single-precision floating-point extended register pairs, XDi (8 registers): An XD
register comprises two XF registers

XD0 = {XF0, XF1}, XD2 = {XF2, XF3}, XD4 = {XF4, XF5}, XD6 = {XF6, XF7},

XD8 = {XF8, XF9}, XD10 = {XF10, XF11}, XD12 = {XF12, XF13},

XD14 = {XF14, XF15}

• Single-precision floating-point extended register matrix, XMTRX: XMTRX
comprises all 16 XF registers

38 Floating-point registers
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

XMTRX = XF0 XF4 XF8 XF12

XF1 XF5 XF9 XF13

XF2 XF6 XF10 XF14

XF3 XF7 XF11 XF15

Figure 3: Floating-point registers

FPR0_BANK0
FPR1_BANK0
FPR2_BANK0
FPR3_BANK0
FPR4_BANK0
FPR5_BANK0
FPR6_BANK0
FPR7_BANK0
FPR8_BANK0
FPR9_BANK0

FPR10_BANK0
FPR11_BANK0
FPR12_BANK0
FPR13_BANK0
FPR14_BANK0
FPR15_BANK0

XF0
XF1
XF2
XF3
XF4
XF5
XF6
XF7
XF8
XF9
XF10
XF11
XF12
XF13
XF14
XF15

FR0
FR1
FR2
FR3
FR4
FR5
FR6
FR7
FR8
FR9
FR10
FR11
FR12
FR13
FR14
FR15

DR0

DR2

DR4

DR6

DR8

DR10

DR12

DR14

FV0

FV4

FV8

FV12

XD0 XMTRX

XD2

XD4

XD6

XD8

XD10

XD12

XD14

FPR0_BANK1
FPR1_BANK1
FPR2_BANK1
FPR3_BANK1
FPR4_BANK1
FPR5_BANK1
FPR6_BANK1
FPR7_BANK1
FPR8_BANK1
FPR9_BANK1

FPR10_BANK1
FPR11_BANK1
FPR12_BANK1
FPR13_BANK1
FPR14_BANK1
FPR15_BANK1

XF0
XF1
XF2
XF3
XF4
XF5
XF6
XF7
XF8
XF9
XF10
XF11
XF12
XF13
XF14
XF15

FR0
FR1
FR2
FR3
FR4
FR5
FR6
FR7
FR8
FR9
FR10
FR11
FR12
FR13
FR14
FR15

DR0

DR2

DR4

DR6

DR8

DR10

DR12

DR14

FV0

FV4

FV8

FV12

XD0XMTRX

XD2

XD4

XD6

XD8

XD10

XD12

XD14

FPSCR.FR = 0 FPSCR.FR = 1

Memory-mapped registers 39
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Programming Note:

After a reset, the values of FPR0_BANK0–FPR15_BANK0 and
FPR0_BANK1–FPR15_BANK1 are undefined.

2.5 Memory-mapped registers
Appendix A summarizes how the control registers are mapped in to the address
space. The control registers are double-mapped to the following two memory areas.
All registers have two addresses.

0x1F00 0000-0x1FFF FFFF

0xFF00 0000-0xFFFF FFFF

These two areas are used as follows.

• 0x1F00 0000–0x1FFF FFFF

This area must be accessed in address translation mode using the TLB. Since
external memory area is defined as a 29-bit address space in the SH-4 CPU core
architecture, the TLB’s physical page numbers do not cover a 32-bit address space.
In address translation, the page numbers of this area can be set in the
corresponding field of the TLB by accessing a memory-mapped register. The page
numbers of this area should be used as the actual page numbers set in the TLB.
When address translation is not performed, the operation of accesses to this area is
undefined.

• 0xFF00 0000–0xFFFF FFFF

Access to area 0xFF00 0000-0xFFFF FFFF in user mode will cause an address error.
Memory-mapped registers can be referenced in user mode by means of access that
involves address translation.

Note: Do not access undefined locations in either area. The operation of an access to an
undefined location is undefined. Memory-mapped registers must be accessed using a
load/store instruction of an equal size to that of the register. The operation of an
access using an invalid data size is undefined.

40 Data format in registers
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

2.6 Data format in registers
Register operands are always longwords (32 bits). When a memory operand is only a
byte (8 bits) or a word (16 bits), it is sign-extended into a longword when loaded into
a register.

2.7 Data formats in memory
Memory can be accessed in 8-bit byte, 16-bit word, or 32-bit longword form. A
memory operand less than 32 bits in length is sign-extended before being loaded
into a register.

A word operand must be accessed starting from a word boundary (even address of a
2-byte unit: address 2n), and a longword operand starting from a longword
boundary (even address of a 4-byte unit: address 4n). An address error will result if
this rule is not observed. A byte operand can be accessed from any address.

Big endian or little endian byte order can be selected for the data format. This
endian selection cannot be changed dynamically and is selected by the system
during power-on reset. Refer to the system architecture manual of the relevant
product for details of how to perform endian selection. Bit positions are numbered
left to right from most-significant to least-significant. Thus, in a 32-bit longword,
the left-most bit, bit 31, is the most significant bit and the right-most bit, bit 0, is the
least significant bit.

The data format in memory is shown in Figure 4.

Note: The SH-4 CPU core does not support endian conversion for the 64-bit data format.
Therefore, if double-precision floating-point format (64-bit) access is performed in
little endian mode, the upper and lower 32 bits will be reversed.

Figure 4: Data formats in memory

Address A

A

7 0 7 0 7 0 7 0

31

15 0 15 0

31 0

15 0

31 0

23 15 7 0

A + 1 A + 2 A + 3

Byte 0

Word 0

Longword

Word 1

Byte 1 Byte 2 Byte 3

A + 11

7 0 7 0 7 0 7 0

31

15 0

23 15 7 0

A + 10 A + 9 A + 8

Byte 3

Word 1

Longword

Word 0

Byte 2 Byte 1 Byte 0

Address A + 4

Address A + 8

Address A + 8

Address A + 4

Address A

Big endian Little endian

Processor states 41
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

2.8 Processor states
The SH-4 CPU core has four processor states. Transitions between the states are
shown in Figure 5

2.8.1 Reset state:

In this state the CPU is reset. The CPU can be placed in one of two reset states,
either power on reset or manual reset. Which of these is selected is determined by
the system architecture. Refer to the relevant system architecture manual for
details. For more information on resets, see section 5, Exceptions.

The purpose of having two manual reset modes is to allow some flexibility over
which system components are reset. Typically:

• power-on reset will cause all system components to be reset,

• manual reset may, for example, avoid resetting DRAM controllers so that
memory contents are preserved.

2.8.2 Exception-handling state:

This is a transient state during which the CPU’s processor state flow is altered by a
reset, general exception, or interrupt exception source.

In the case of a reset, the CPU branches to address 0xA000 0000 and starts
executing the user-coded exception handling program.

In the case of a general exception or interrupt, the program counter (PC) contents
are saved in the saved program counter (SPC), the status register (SR) contents are
saved in the saved status register (SSR), and the R15 contents are saved in saved
general register 15 (SGR). The CPU branches to the start address of the user-coded
exception service routine, found from the sum of the contents of the vector base
address and the vector offset.

See Chapter 5: Exceptions, for more information on resets, general exceptions, and
interrupts.

2.8.3 Program execution state:

In this state the CPU executes program instructions in sequence.

42 Processor states
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

2.8.4 Power-down state:

The power-down state is entered by executing a SLEEP instruction. In this state the
CPU stops executing instructions and signals to the system that the CPU has been
put to sleep. The system response to receiving this signal is described in the System
Architecture Manual of the appropriate product.

The CPU is restarted by raising an interrupt.

Note: For conditions determining state transitions, see the System Architecture Manual.

Figure 5: Processor state transitions

 Power-on reset state Manual reset state

Exception-handling state

Program execution state

Sleep mode Standby mode

Power-on reset state Manual reset state

 Reset state

 Power-down state

InterruptInterrupt

End of exception
transition
processing

Exception
interrupt

SLEEP instruction
 with STBY bit set

SLEEP instruction
with STBY bit
cleared

Processor modes 43
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

2.9 Processor modes
There are two processor modes: user mode and privileged mode. The processor mode
is determined by the processor mode bit (MD) in the status register (SR). User mode
is selected when the MD bit is cleared to 0, and privileged mode when the MD bit is
set to 1. When the reset state or exception state is entered, the MD bit is set to 1.
When exception handling ends, the MD bit returns to the value held before the
exception occurred.

44 Processor modes
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

3Memory
management
unit (MMU)
3.1 Overview

The SH-4 CPU core manages a 29-bit external memory space by providing 8-bit
address space identifiers, and a 32-bit logical (virtual) address space. Address
translation from virtual address to physical address is performed using the memory
management unit (MMU), built into the SH-4 CPU core. The MMU performs
high-speed address translation by caching user-created address translation table
information, in an address translation buffer (translation lookaside buffer: TLB).
The SH-4 has four instruction TLB (ITLB) entries and 64 unified TLB (UTLB)
entries. UTLB copies are stored in the ITLB by hardware. It is possible to set the
virtual address space access right, and implement storage protection independently,
for privileged mode and user mode.

3.2 Role of the MMU
The main purpose of an MMU is to ensure that efficient use is made of physical
memory, which in most systems is a limiting resource. The MMU is normally
managed by the OS, which allocates physical pages of memory to virtual pages of
memory, as required by a task. Pages which are switched out by the OS are placed in
a secondary storage device, such as a hard disk.

A page refers to a contiguous range of addresses, which can all be translated by a
single translation table entry. On SH-4 there is support for 4 page sizes: 1-kbyte,
4-kbyte, 64-kbyte and 1-Mbyte.

Memory protection functions are provided to prevent physical memory from
inadvertently being accessed and reset by a process.

46 Register descriptions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Although the functions of the MMU could be implemented by software alone, having
address translation performed by software each time a process accessed physical
memory would be very inefficient. For this reason, a buffer for address translation
(TLB) is provided in hardware, and frequently used address translation information
is placed here. The TLB can be described as a cache for address translation
information. However, unlike a cache, if address translation fails—that is, if an
exception occurs—switching of the address translation information is normally
performed by software. Thus memory management can be performed in a flexible
manner by software.

3.3 Register descriptions
 There are six MMU-related registers.

Note: Behavior is undefined if an area designated as a reserved area in this manual is
accessed.

Name Abbreviation R/W
Initial

valuea P4 addressb
Area 7

addressB
Access

size

Page table entry high
register

PTEH R/W Undefined 0xFF00 0000 0x1F00 0000 32

Page table entry low
register

PTEL R/W Undefined 0xFF00 0004 0x1F00 0004 32

Translation table base
register

TTB R/W Undefined 0xFF00 0008 0x1F00 0008 32

Translation table address
register

TEA R/W Undefined 0xFF00 000C 0x1F00 000C 32

MMU control register MMUCR R/W 0x0000
0000

0xFF00 0010 0x1F00 0010 32

Table 7: MMU registers

a. The initial value is the value after a power-on reset or manual reset.

b. This is the address when using the virtual/physical address space P4 region. When making an
access from physical address space Area 7 using the TLB, the upper 3 bits of the address are
ignored.

Register descriptions 47
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

3.3.1 Page table entry high register (PTEH)

Longword access to PTEH can be performed from 0xFF00 0000 in the P4 region,
and 0x1F00 0000 in Area 7. When an MMU exception or address error exception
occurs, the VPN of the virtual address at which the exception occurred, is set in the
VPN field by hardware. VPN varies according to the page size, but the VPN set by
hardware when an exception occurs, always consists of the upper 22 bits of the
virtual address which caused the exception. VPN setting can also be carried out by
software. The number of the currently executing process is set in the ASID field by
software. ASID is not updated by hardware. VPN and ASID are recorded in the
UTLB by means of the LDLTB instruction.

PTEH

Field Bits Size Synopsis Type

ASID [0,7] 8 Address space identifier. RW

Operation Indicates the process that can access a virtual page. In single
virtual memory mode and user mode, or in multiple virtual
memory mode, if the SH bit is 0, this identifier is compared with
the ASID in PTEH when address comparison is performed.

See section 3.3.7 Address space identifier.

Power-on reset Undefined

VPN [10,31] 22 Virtual page number. RW

Operation For 1-kbyte : upper 22 bits of virtual address.

For 4-kbyte : upper 20 bits of virtual address.

For 64-kbyte : upper 16 bits of virtual address.

For 1-Mbyte : upper 12 bits of virtual address.

Power-on reset Undefined

Table 8: PTEH register description

48 Register descriptions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

3.3.2 Page table entry low register (PTEL)

Longword access to PTEL can be performed from 0xFF00 0004 in the P4 region, and
0x1F00 0004 in Area 7. PTEL is used to hold the physical page number and page
management information to be recorded in the UTLB, by means of the LDTLB
instruction. The contents of this register are not changed unless a software directive
is issued.

PTEL

Field Bits Size Synopsis Type

WT 0 1 Write-through bit. RW

Operation Specifies the cache write mode.

0 : Copy-back mode.

1 : Write-through mode.

Power-on reset Undefined

SH 1 1 Share status bit. RW

Operation 0 : pages are not shared by processes.

1 : pages are shared by processes.

Power-on reset Undefined

D 2 1 Dirty bit RW

Operation Indicates whether a write has been performed to a page.

0 : Write has not been performed.

1 : Write has been performed.

Power-on reset Undefined

C 3 1 Cacheability bit. RW

Operation Indicates whether a page is cacheable.

0 : Not cacheable.

1 : Cacheable.

When control register is mapped, this bit must be cleared to 0.

Power-on reset Undefined

Table 9: PTEL register description

Register descriptions 49
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

SZ0 4 1 Page size bit. RW

Operation Specify page size.

Power-on reset Undefined

PR [5,6] 2 Protection key data. RW

Operation 2-bit data expressing the page access right as a code.

00 : Can be read only in privileged mode.

01 : Can be read and written in privileged mode.

10 : Can be read only, in privileged or user mode.

11 : Can be read and written in privileged or user mode.

Power-on reset Undefined

SZ1 7 1 Page size bit RW

Operation Refer to SZ0 for operation details.

Power-on reset 0

PTEL

Field Bits Size Synopsis Type

Table 9: PTEL register description

Bit SZ1 Bit SZ0 Page Size

0 0 1-kbyte

0 1 4-kbyte

1 0 64-kbyte

1 1 1-Mbyte

50 Register descriptions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

V 8 1 Validity bit. RW

Operation Indicates whether the entry is valid.

0 : Invalid

1 : Valid

Cleared to 0 by a power-on reset.

Not affected by a manual reset.

Power-on reset Undefined

PPN [10,28] 19 Physical page number RW

Operation Upper 22 bits of the physical address.

With a 1-kbyte page, PPN bits [28:10] are valid.

With a 4-kbyte page, PPN bits [28:12] are valid.

With a 64-kbyte page, PPN bits [28:16] are valid.

With a 1-Mbyte page, PPN bits [28:20] are valid.

The synonym problem must be taken into account when setting
the PPN (Section 3.6.5: Avoiding synonym problems on
page 68).

Power-on reset Undefined

RES 9,
[29,31]

4 Bits reserved RW

Power-on reset Undefined

PTEL

Field Bits Size Synopsis Type

Table 9: PTEL register description

Register descriptions 51
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

3.3.3 Translation table base register (TTB)

Long word access to the TTB can be performed from 0xFF00 0008 in the P4 region,
and 0x1F00 0008 in Area 7. The contents of the TTB are not changed unless a
software directive is issued. This register can be freely used by software.

3.3.4 TLB exception address register (TEA)

Longword access to TEA can be performed from 0xFF00 000C in the P4 region and
0x1F00 000C in Area 7. The contents of this register can be changed by software.

3.3.5 MMU control register (MMUCR)

Longword access to MMUCR can be performed from 0xFF00 0010 in the P4 region,
and 0x1F00 0010 in Area 7. The individual bits perform MMU settings as shown
below. Therefore, MMUCR rewriting should be performed by a program in the P1 or
P2 region. After MMUCR is updated, an instruction that performs data access to the

TTB

Field Bits Size Synopsis Type

TTB [0,31] 32 Translation table base register. RW

Operation TTB is used, for example, to hold the base address of the
currently used page table.

Power-on reset Undefined

Table 10: TTB register description

TEA

Field Bits Size Synopsis Type

TEA [0,31] 32 TLB exception address register. RW

Operation After an MMU exception or address error exception occurs, the
virtual address at which the exception occurred is set in TEA by
hardware.

Power-on reset Undefined

Table 11: TEA register description

52 Register descriptions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

P0, P3, U0, or store queue region should be located at least four instructions after
the MMUCR update instruction. Also, a branch instruction to the P0, P3, or U0
region should be located at least eight instructions after the MMUCR update
instruction. MMUCR contents can be changed by software. The LRUI bits and URC
bits may also be updated by hardware.

MMUCR

Field Bits Size Synopsis Type

AT 0 1 Address translation bit. RW

Operation Specifies MMU enabling or disabling.

0 : MMU disabled.

1 : MMU enabled.

MMU exceptions are not generated when the AT bit is 0.
Therefore, in the case of software that does not use the MMU,
the AT bit should be cleared to 0.

Power-on reset 0

TI 2 1 TLB invalidate. RW

Operation Writing 1 to this bit invalidates (clears to 0) all valid UTLB/ITLB
bits. This bit always returns 0 when read.

Power-on reset 0

SV 8 1 Single virtual mode bit. RW

Operation Bit that switches between single virtual memory mode and
multiple virtual memory mode.

0 : Multiple virtual memory mode.

1 : Single virtual memory mode.

When this bit is changed, ensure that 1 is also written to the TI
bit.

Power-on reset 0

Table 12: MMUCR register description

Register descriptions 53
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

SQMD 9 1 Store queue mode bit. RW

Operation Specifies the right of access to the store queues.

0 : User/privileged access possible.

1 : Privileged access possible (address error exception in case of
user access).

Power-on reset 0

URC [10,15] 6 UTLB replace counter. RW

Operation Random counter for indicating the UTLB entry for which
replacement is to be performed with an LDTLB instruction. URC
is incremented each time the UTLB is accessed. When URB > 0,
URC is reset to 0 when the condition URC = URB occurs. Also
note that, if a value is written to URC by software which results in
the condition URC > URB, incrementing is first performed in
excess of URB until URC = 0x3F. URC is not incremented by an
LDTLB instruction.

Power-on reset 0

URB [18,23] 6 UTLB replace boundary. RW

Operation Bits that indicate the UTLB entry boundary at which replacement
is to be performed. Valid only when URB > 0.

Power-on reset 0

MMUCR

Field Bits Size Synopsis Type

Table 12: MMUCR register description

54 Register descriptions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

LRUI [26, 31] 6 Least recently used ITLB. RW

Operation The LRU (least recently used) method is used to decide the ITLB
entry to be replaced in the event of an ITLB miss. The entry to be
purged from the ITLB can be confirmed using the LRUI bits. LRUI
is updated by means of the algorithm shown below. A dash in this
table means that updating is not performed .

When the LRUI bit settings are as shown below, the
corresponding ITLB entry is updated by an ITLB miss. An
asterisk in this table means “don’t care”..

Ensure that values for which “Setting prohibited” is indicated in
the above table are not set at the discretion of software. After a
power-on manual reset the bits are initialized to 0,and therefore a
prohibited setting is never made by a hardware update.

Power-on reset 0

MMUCR

Field Bits Size Synopsis Type

Table 12: MMUCR register description

[5] [4] [3] [2] [1] [0]

When ITLB entry 0 is used 0 0 0 - - -

When ITLB entry 1 is used 1 - - 0 0 -

When ITLB entry 2 is used - 1 - 1 - 0

When ITLB entry 3 is used - - 1 - 1 1

Other than the above - - - - - -

[5] [4] [3] [2] [1] [0]

ITLB entry 0 is updated 1 1 1 * * *

ITLB entry 1 is updated 0 * * 1 1 *

ITLB entry 2 is updated * 0 * 0 * 1

ITLB entry 3 is updated * * 0 * 0 0

Other than the above Setting prohibited

Address space 55
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

3.4 Address space

3.4.1 Physical address space

The SH-4 CPU core supports a 32-bit (4-Gbyte) physical address space. When the
MMUCR.AT bit is cleared to 0 and the MMU is disabled, the address space accessed
by the program is this physical address space. The physical address space is divided
into a number of regions, as shown in Figure 7. The region is selected using the top
3 bits of the physical address.

RES 1, [3,7],
[16,17],
[24,25]

10 Bits reserved RW

Power-on reset Undefined

MMUCR

Field Bits Size Synopsis Type

Table 12: MMUCR register description

Bit Region accessed

31 30 29 Privileged mode User mode

0 0 0 P0 U0

0 0 1

0 1 0

0 1 1

1 0 0 P1 Address error

1 0 1 P2 Address error

1 1 0 P3 Address error

1 1 1 P4 Address error

Table 13: Region selection

56 Address space
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

The region selected determines how the remaining 29 bits are interpreted. For
example P0, P1 and P3 all access the 29 bits of external memory via the cache. P4 is
used exclusively to access the cores internal devices. See the system architecture
manual for more details of the internal devices available on a particular product.

3.4.2 External memory space

The SH-4 CPU core supports a 29-bit external memory space.The external memory
space is divided into eight Areas as shown in Figure 7. Areas 0 to 6 relate to
memory, Area 7 is a reserved area, and is only accessed via the P4 region.

Figure 6: External memory Space

 Area 0

 Area 1

 Area 2

 Area 3

 Area 4

 Area 5

 Area 6

Area 7 (reserved area)

0x0800 0000

0x0000 0000

0x0400 0000

0x0C00 0000

0x1000 0000

0x1400 0000

0x1800 0000

0x1C00 0000

0x1FFF FFFF

Address space 57
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

P0, P1, P3, U0 Regions: The P0, P1, P3, and U0 regions can be accessed using the
cache. Whether or not the cache is used is determined by the cache control register
(CCR). When the cache is used, with the exception of the P1 region, switching
between the copy-back method and the write-through method for write accesses is
specified by the CCR.WT bit. For the P1 region, switching is specified by the
CCR.CB bit. Zeroing the upper 3 bits of an address in these regions gives the
corresponding external memory space address. However, since Area 7 in the
external memory space is a reserved Area, a reserved area also appears in these
regions.

P2 Region: The P2 region cannot be accessed using the cache. In the P2 region,
zeroing the upper 3 bits of an address gives the corresponding external memory
space address. However, since Area 7 in the external memory space is a reserved
Area, a reserved area also appears in this region.

P4 Region: The P4 region is mapped onto SH-4 CPU core on-chip I/O channels.
This region cannot be accessed using the cache. The P4 region is shown in detail in
Table 14.

Figure 7: Physical address space (MMUCR.AT = 0)

 0xFFFF FFFF

0xC000 0000

0xE000 0000

0xA000 0000

0x8000 0000

P4 region
Non-cacheable

P3 region
Cacheable

P2 region
Non-cacheable

 P1 region
 Cacheable

0xFFFF FFFF
 Address error

Address error

0xE000 0000
0xE400 0000

0x8000 0000

U0 region
Cacheable

0x0000 00000x0000 0000

P0 region
Cacheable

 Privileged mode User mode

Area 0
Area 1
Area 2
Area 3
Area 4
Area 5
Area 6
Area 7 *

External memory space

 Store queue region

 * Area 7 is reserved

58 Address space
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Start address End address Function

0xE000 0000 0xE3FF FFFF Comprises addresses for accessing the store queues (SQs). When
the MMU is disabled (MMUCR.AT=0), the SQ access right is
specified by the MMUCR.SQMD bit.

For details, see Section 4.6: Store queues on page 105.

0xF000 0000 0xF0FF FFFF Used for direct access to the instruction cache address array.

For details, see Section 4.5.1: IC address array on page 99.

0xF100 0000 0xF1FF FFFF Used for direct access to the instruction cache data array.

For details, see Section 4.5.4: IC data array on page 101.

0xF200 0000 0xF2FF FFFF Used for direct access to the instruction TLB address array.

For details, see Section 3.8.1: ITLB address array on page 74

0xF300 0000 0xF3FF FFFF Used for direct access to instruction TLB data arrays 1 and 2.

For details, see Section 3.8.2: ITLB data array 1 on page 75.

0xF400 0000 0xF4FF FFFF Used for direct access to the operand cache address array.

For details, see Section 4.5.5: OC address array on page 102.

0xF500 0000 0xF5FF FFFF Used for direct access to the operand cache data array.

For details, see Section 4.5.6: OC data array on page 103.

0xF600 0000 0xF6FF FFFF Used for direct access to the unified TLB address array.

For details, see Section 3.8.3: UTLB address array on page 76.

0xF700 0000 0xF7FF FFFF Used for direct access to unified TLB data arrays 1 and 2.

For details, see Section 3.8.4: UTLB data array 1 on page 78.

0xFC00 0000 0xFFFF FFFF Control register area.

Table 14: P4 area

Address space 59
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

3.4.3 Virtual address space

Setting the MMUCR.AT bit to 1, enables the P0, P3, and U0 regions of the address
space in the SH-4 CPU core to be mapped onto any external memory space in 1-, 4-,
or 64-kbyte, or 1-Mbyte, page units. Mapping from virtual address space to 29-bit
external memory space is carried out using the TLB. When accessed using virtual
addressing, Area 7 is equivalent to the P4 region in physical address space. Virtual
address space is illustrated in Figure 8.

Figure 8: Virtual memory space (MMUCR.AT = 1)

Area 0
Area 1
Area 2
Area 3
Area 4
Area 5
Area 6
Area 7

P0 region
Cacheable
Address Translation
Possible

P1 region
Cacheable
Address Translation

 Not Possible
P2 region
Non-cacheable
Address Translation

 Not Possible
P3 region
Cacheable
Address Translation

 Possible
P4 region
Non-cacheable
Address Translation

 Not Possible

U0 region
Cacheable
Address Translation

 Possible

Address error

 Store queue region

Address error

External memory space

Privileged mode User mode

60 Address space
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

P0, P3, U0 Regions: The P0 region (excluding addresses 0x7C00 0000 to 0x7FFF
FFFF), P3 region, and U0 region, allow access using the cache, and address
translation using the TLB. These regions can be mapped onto any external memory
space in 1, 4, or 64-kbyte, or 1-Mbyte, page units. When CCR is in the cache-enabled
state, and the TLB enable bit (C bit) is 1, accesses can be performed using the cache.
In write accesses to the cache, switching between the copy-back method and the
write-through method is indicated by the TLB write-through bit (WT bit), and is
specified in page units.

Only when the P0, P3, and U0 regions are mapped onto external memory space by
means of the TLB, are addresses 0x1C00 0000 to 0x1FFF FFFF of Area 7 in external
memory space allocated to the control register area. This enables control registers to
be accessed from the U0 region in user mode. In this case, the C bit for the
corresponding page must be cleared to 0.

P1, P2, P4 Regions: Address translation using the TLB cannot be performed for
the P1, P2, or P4 region (except for the store queue region). Accesses to these regions
are the same as for physical address space. The store queue region can be mapped
onto any external memory space by the MMU. However, operation in the case of an
exception differs from that for normal P0, U0, and P3 spaces. For details, see section
4.6, Store Queues.

3.4.4 On-chip RAM space

In the SH-4 CPU core, half of the (16 kbyte) operand cache can be used as on-chip
RAM. This can be done by changing the CCR settings.

When the operand cache is used as on-chip RAM (CCR.ORA = 1), the P0/ U0 region
addresses 0x7C00 0000 to 0x7FFF FFFF are an on-chip RAM area. Data accesses
(byte/word/longword/quadword) can be used in this area. This area can only be used
in RAM mode.

Note: It is not possible to execute instructions out of this on-chip RAM.

Address space 61
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

3.4.5 Address translation

In the SH-4 CPU core, the ITLB is used for instruction accesses and the UTLB for
data accesses. In the event of an access to an region other than the P4 region, the
accessed virtual address is translated to a physical address. If the virtual address
belongs to the P1 or P2 region, the physical address is uniquely determined without
accessing the TLB. If the virtual address belongs to the P0, U0, or P3 region, the
TLB is searched using the virtual address, and if the virtual address is recorded in
the TLB, a TLB hit is made and the corresponding physical address is read from the
TLB. If the accessed virtual address is not recorded in the TLB, a TLB miss
exception is generated and processing switches to the TLB miss exception handling
routine. In the TLB miss exception handling routine, the address translation table
in external memory is searched, and the corresponding physical address and page
management information are recorded in the TLB. After the return from the
exception handling routine, the instruction which caused the TLB miss exception is
re-executed.

3.4.6 Single virtual memory mode and multiple virtual memory
mode

There are two virtual memory systems, either of which can be selected with the
MMUCR.SV bit:

• single virtual memory
A number of processes run simultaneously, using non-overlapping virtual
address spaces, so that the physical address corresponding to a particular virtual
address is uniquely determined.

• multiple virtual memory
A number of processes run with overlapping virtual address spaces,
consequently, virtual addresses may need to be translated into different physical
addresses depending on the process i.d.

The only difference between the single virtual memory and multiple virtual memory
systems in terms of operation is in the TLB address comparison method (see Section
3.5.3: Address translation method on page 63).

62 TLB functions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

3.4.7 Address space identifier (ASID)

In multiple virtual memory mode, the 8-bit address space identifier (ASID) is used
to distinguish between processes running simultaneously, while sharing the virtual
address space. Software can set the ASID of the currently executing process in
PTEH in the MMU. The TLB does not have to be purged when processes are
switched by means of ASID.

In single virtual memory mode, ASID is used to provide memory protection for
processes running simultaneously while using the virtual memory space on an
exclusive basis.

3.5 TLB functions

3.5.1 Unified TLB (UTLB) configuration

The unified TLB (UTLB) is so called because of its use for the following two
purposes:

1 To translate a virtual address to a physical address in a data access

2 As a table of address translation information, to be recorded in the instruction
TLB in the event of an ITLB miss

Information in the address translation table located in external memory is cached
into the UTLB. The address translation table contains virtual page numbers and
address space identifiers, and corresponding physical page numbers and page
management information. Figure 9 shows the overall configuration of the UTLB.
The UTLB consists of 64 fully-associative type entries.

Figure 9: UTLB configuration

PPN [28:10]

PPN [28:10]

PPN [28:10]

SZ [1:0]

SZ [1:0]

SZ [1:0]

SH

SH

SH

C

C

C

PR [1:0]

PR [1:0]

PR [1:0]

ASID [7:0]

ASID [7:0]

ASID [7:0]

VPN [31:10]

VPN [31:10]

VPN [31:10]

V

V

V

Entry 0

Entry 1

Entry 2

D

D

D

WT

WT

WT

PPN [28:10] SZ [1:0] SH C PR [1:0]

SA [2:0]

SA [2:0]

SA [2:0]

TC

TC

TC

SA [2:0] TCASID [7:0] VPN [31:10] VEntry 63 D WT

TLB functions 63
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

3.5.2 Instruction TLB (ITLB) configuration

The ITLB is used to translate a virtual address to a physical address in an
instruction access. Information in the address translation table located in the
UTLB, is cached into the ITLB. Figure 10 shows the overall configuration of the
ITLB. The ITLB consists of 4 fully-associative type entries. The address translation
information is almost the same as that in the UTLB, but with the following
differences:

1 D and WT bits are not supported.

2 There is only one PR bit, corresponding to the upper of the PR bits in the UTLB.

3.5.3 Address translation method

Figure 11 and Figure 12 show flowcharts of memory accesses using the UTLB and
ITLB

Figure 10: ITLB configuration

PPN [28:10]

PPN [28:10]

PPN [28:10]

PPN [28:10]

SZ [1:0]

SZ [1:0]

SZ [1:0]

SZ [1:0]

SH

SH

SH

SH

C

C

C

C

PR

PR

PR

PR

ASID [7:0]

ASID [7:0]

ASID [7:0]

ASID [7:0]

VPN [31:10]

VPN [31:10]

VPN [31:10]

VPN [31:10]

V

V

V

V

Entry 0

Entry 1

Entry 2

Entry 3

SA [2:0]

SA [2:0]

SA [2:0]

SA [2:0]

TC

TC

TC

TC

64 TLB functions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

.

Figure 11: Flowchart of memory access using UTLB figure

MMUCR.AT = 1

SH = 0
and (MMUCR.SV = 0 or

SR.MD = 0)

VPNs match
and ASIDs match and

V = 1

Only one
entry matches

SR.MD?

CCR.OCE?

CCR.CB? CCR.WT?

VPNs match
and V = 1

Cache access
in write-through mode

Memory access

Memory access

Data TLB multiple
hit exception

Data TLB protection
violation exception

Data TLB miss
exception

Initial page write
exception

Data TLB protection
violation exception

Cache access
in copy-back mode

Data access to virtual address (VA)

On-chip I/O access

R/W?R/W?

VA is
in P4 area

VA is
in P2 area

VA is
in P1 area

VA is in P0, U0,
or P3 area

Yes

No

1

0

Yes

Yes

NoNo

Yes

Yes

Yes

No

No

1 (Privileged)

1

0

0

PR?

0 (User)

D?

R/W? WWW

RRR R

WR/W?

(Non-cacheable)

WT?

C = 1
 and CCR.OCE = 1

No

1

1

0

0

00 or
01

10 11 01 or 11 00 or 10

TLB functions 65
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Figure 12: Flowchart of memory access using ITLB

MMUCR.AT = 1

SH = 0
and (MMUCR.SV = 0 or

SR.MD = 0)

VPNs match
and ASIDs match and

V = 1

Only one
entry matches

SR.MD?

CCR.ICE?

VPNs match
and V = 1

Memory access

Instruction TLB
multiple hit exception

Instruction TLB
miss exception

Instruction access to virtual address (VA)

VA is
in P4 area

VA is
in P2 area

VA is
in P1 area

VA is in P0, U0,
or P3 area

Yes

No

1

0

Yes

Yes

NoNo

Yes

Yes

No

(Non-cacheable)

C = 1
and CCR.ICE = 1

No

PR?

 Instruction TLB protection
violation exception

Match? Record in ITLB

Access prohibited

0

1

No

Yes

Yes

No

Hardware ITLB
miss handling

0 (User)
1 (Privileged)

Search UTLB

Cache access

66 MMU functions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

3.6 MMU functions

3.6.1 MMU hardware management

The SH-4 CPU core supports the following MMU functions.

1 The MMU decodes the virtual address to be accessed by software, and performs
address translation by controlling the UTLB/ITLB, in accordance with the
MMUCR settings.

2 The MMU determines the cache access status, on the basis of the page
management information read during address translation (C, WT, SA, and TC
bits).

3 If address translation cannot be performed normally in a data access or
instruction access, the MMU notifies software by means of an MMU exception.

4 If address translation information is not recorded in the ITLB in an instruction
access, the MMU searches the UTLB, and if the necessary address translation
information is recorded in the UTLB, the MMU copies this information into the
ITLB in accordance with MMUCR.LRUI.

3.6.2 MMU software management

Software processing for the MMU consists of the following:

1 Setting of MMU-related registers.
Some registers are also partially updated by hardware automatically.

2 Recording, deletion, and reading of TLB entries.
There are two methods of recording UTLB entries: by using the LDTLB
instruction, or by writing directly to the memory-mapped UTLB.

ITLB entries can only be recorded by writing directly to the memory-mapped
ITLB. For deleting or reading UTLB/ITLB entries, it is possible to access the
memory-mapped UTLB/ITLB.

3 MMU exception handling.
When an MMU exception occurs, processing is performed based on information
set by hardware.

MMU functions 67
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

3.6.3 MMU instruction (LDTLB)

A TLB load instruction (LDTLB) is provided for recording UTLB entries. When an
LDTLB instruction is issued, the SH-4 CPU core copies the contents of PTEH,
PTEL, and to the UTLB entry indicated by MMUCR.URC. ITLB entries are not
updated by the LDTLB instruction, and therefore address translation information
purged from the UTLB entry may still remain in the ITLB entry. As the LDTLB
instruction changes address translation information, ensure that it is issued by a
program in the P1 or P2 region. The operation of the LDTLB instruction is shown in
Figure 13.

Figure 13: Operation of LDTLB instruction

PPN [28:10]

PPN [28:10]

PPN [28:10]

SZ [1:0]

SZ [1:0]

SZ [1:0]

SH

SH

SH

C

C

C

PR [1:0]

PR [1:0]

PR [1:0]

ASID [7:0]

ASID [7:0]

ASID [7:0]

VPN [31:10]

VPN [31:10]

VPN [31:10]

V

V

V

Entry 0

Entry 1

Entry 2

D

D

D

WT

WT

WT

PPN [28:10] SZ [1:0] SH C PR [1:0]

SA [2:0]

SA [2:0]

SA [2:0]

TC

TC

TC

SA [2:0] TCASID [7:0] VPN [31:10] VEntry 63 D WT

31 29 28 9 8 7 6 5 4 3 2 1 0

— — V SZ PR SZ C D SHWT

PTEL

Write

UTLB

31 10 9 8 7 0

— ASID

PTEH

31 26 25 24 23 18 17 16 15 10 9 8 7 3 2 1 0

LRUI — URB — URC SV

SQMD

— TI — AT

MMUCR

VPN

10

PPN

31 4 3 2 0

— SATC

PTEA

Entry specification

68 MMU functions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

3.6.4 Hardware ITLB miss handling

In an instruction access, the SH-4 CPU core searches the ITLB. If it cannot find the
necessary address translation information (i.e. in the event of an ITLB miss), the
UTLB is searched by hardware, and if the necessary address translation
information is present, it is recorded in the ITLB. This procedure is known as
hardware ITLB miss handling. If the necessary address translation information is
not found in the UTLB search, an instruction TLB miss exception is generated and
processing passes to software.

3.6.5 Avoiding synonym problems

When 1 or 4-kbyte pages are recorded in TLB entries, a synonym problem may arise.
The problem is that, when a number of virtual addresses are mapped onto a single
physical address, the same physical address data may be recorded in a number of
cache entries, and it becomes impossible to guarantee data integrity. This problem
does not occur with the instruction TLB or instruction cache. In the SH-4 CPU core,
line selection is performed using bits [13:5] of the virtual address, as this avoids the
cache having to go via the TLB and thus achieves faster operand cache operation.
However, bits [13:10] of the virtual address in the case of a 1-kbyte page, and bits
[13:12] of the virtual address in the case of a 4-kbyte page, are subject to address
translation. As a result, bits [13:10] of the physical address after translation may
differ from bits [13:10] of the virtual address.

Great care must therefore be taken whenever translations are set up which could
cause synonyms, in particular, if two operand translations are to the same physical
page but their virtual addresses differ in their synonym bits:

• Do not allow both the translations to be active at the same time.

• Always separate activations of the two translations by an appropriate cache
purge.

Handling MMU exceptions 69
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

3.7 Handling MMU exceptions
There are seven MMU exceptions.

3.7.1 ITLBMULTIHIT

An instruction TLB multiple hit exception occurs when, more than one ITLB entry
matches the virtual address to which an instruction access has been made. If
multiple hits occur when the UTLB is searched by hardware, in hardware ITLB
miss handling, a data TLB multiple hit exception will result.

When an instruction TLB multiple hit exception occurs a reset is executed, and
cache coherency is not guaranteed.

Hardware processing

See Chapter 5: Exceptions on page 109, ITLBMULTIHIT - Instruction TLB
Multiple-Hit Exception on page 122.

Software processing (reset routine)

The ITLB entries which caused the multiple hit exception are checked in the reset
handling routine. This exception is intended for use in program debugging, and
should not normally be generated.

3.7.2 ITLBMISS

An instruction TLB miss exception occurs when, address translation information for
the virtual address to which an instruction access is made, is not found in the UTLB
entries by the hardware ITLB miss handling procedure. The instruction TLB miss
exception processing, carried out by software, is shown below. This is the same as
the processing for a data TLB miss exception.

Hardware processing

See, Chapter 5: Exceptions on page 109, ITLBMISS - Instruction TLB Miss
Exception on page 126.

70 Handling MMU exceptions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Software processing (instruction TLB miss exception handling routine)

Software is responsible for searching the external memory page table and assigning
the necessary page table entry. Software should carry out the following processing
in order to find and assign the necessary page table entry.

1 Write to PTEL the values of the PPN, PR, SZ, C, D, SH, V, and WT bits in the
page table entry recorded in the external memory address translation table.

2 When the entry to be replaced in entry replacement is specified by software,
write that value to URC in the MMUCR register. If URC is greater than URB at
this time, the value should be changed to an appropriate value after issuing an
LDTLB instruction.

3 Execute the LDTLB instruction and write the contents of PTEH, PTEL, and to
the TLB.

4 Finally, execute the exception handling return instruction (RTE), terminate the
exception handling routine, and return control to the normal flow. The RTE
instruction should be issued at least one instruction after the LDTLB
instruction.

3.7.3 EXECPROT

An instruction TLB protection violation exception occurs when, even though an
ITLB entry contains address translation information matching the virtual address
to which an instruction access is made, the actual access type is not permitted by the
access right specified by the PR bit. The instruction TLB protection violation
exception processing, carried out by software, is shown below.

Hardware processing

See Chapter 5: Exceptions on page 109, EXECPROT - Instruction TLB Protection
Violation Exception on page 130.

Software processing (instruction TLB protection violation exception handling
routine)

Resolve the instruction TLB protection violation, execute the exception handling
return instruction (RTE), terminate the exception handling routine, and return
control to the normal flow. The RTE instruction should be issued at least one
instruction after the LDTLB instruction.

Handling MMU exceptions 71
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

3.7.4 OTLBMULTIHIT

An operand TLB multiple hit exception occurs when, more than one UTLB entry
matches the virtual address to which a data access has been made. A data TLB
multiple hit exception is also generated if multiple hits occur, when the UTLB is
searched in hardware ITLB miss handling.

When an operand TLB multiple hit exception occurs, a reset is executed, and cache
coherency is not guaranteed. The contents of PPN in the UTLB prior to the
exception may also be corrupted.

Hardware processing

See Chapter 5: Exceptions on page 109, OTLBMULTIHIT - Operand TLB
Multiple-Hit Exception on page 123.

Software processing (reset routine)

The UTLB entries which caused the multiple hit exception are checked in the reset
handling routine. This exception is intended for use in program debugging, and
should not normally be generated.

3.7.5 TLBMISS

A data TLB miss exception occurs when, address translation information for the
virtual address to which a data access is made is not found in the UTLB entries. The
data TLB miss exception processing, carried out by software, is shown below.

Hardware processing

See Chapter 5: Exceptions on page 109, RTLBMISS - Read Data TLB Miss
Exception on page 124.

Software processing (data TLB miss exception handling routine)

Software is responsible for searching the external memory page table and assigning
the necessary page table entry. Software should carry out the following processing in
order to find and assign the necessary page table entry.

1 Write to PTEL the values of the PPN, PR, SZ, C, D, SH, V, and WT bits in the
page table entry recorded in the external memory address translation table. .

72 Handling MMU exceptions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

2 When the entry to be replaced in entry replacement is specified by software,
write that value to URC in the MMUCR register. If URC is greater than URB at
this time, the value should be changed to an appropriate value after issuing an
LDTLB instruction.

3 Execute the LDTLB instruction and write the contents of PTEH, PTEL, and to
the UTLB.

4 Finally, execute the exception handling return instruction (RTE), terminate the
exception handling routine, and return control to the normal flow. The RTE
instruction should be issued at least one instruction after the LDTLB
instruction.

3.7.6 READPROT

A data TLB protection violation exception occurs when, even though a UTLB entry
contains address translation information matching the virtual address to which a
data access is made, the actual access type is not permitted by the access right
specified by the PR bit. The data TLB protection violation exception processing,
carried out by software, is shown below.

Hardware processing

See Chapter 5: Exceptions on page 109, READPROT - Data TLB Protection
Violation Exception on page 128

Software processing (data TLB protection violation exception handling routine)

Resolve the data TLB protection violation, execute the exception handling return
instruction (RTE), terminate the exception handling routine, and return control to
the normal flow. The RTE instruction should be issued at least one instruction after
the LDTLB instruction.

3.7.7 FIRSTWRITE

An initial page write exception occurs when, the D bit is 0 even though a UTLB
entry contains address translation information matching the virtual address to
which a data access (write) is made, and the access is permitted. The initial page
write exception processing, carried out by software, is shown below.

Memory-mapped TLB configuration 73
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Hardware processing

See Chapter 5: Exceptions on page 109, FIRSTWRITE - Initial Page Write Exception
on page 127

Software processing (initial page write exception handling routine)

The following processing should be carried out as the responsibility of software:

1 Retrieve the necessary page table entry from external memory.

2 Write 1 to the D bit in the external memory page table entry.

3 Write to PTEL the values of the PPN, PR, SZ, C, D, WT, SH, and V bits in the
page table entry recorded in external memory..

4 When the entry to be replaced in entry replacement is specified by software,
write that value to URC in the MMUCR register. If URC is greater than URB at
this time, the value should be changed to an appropriate value after issuing an
LDTLB instruction.

5 Execute the LDTLB instruction and write the contents of PTEH, PTEL, and to
the UTLB.

6 Finally, execute the exception handling return instruction (RTE), terminate the
exception handling routine, and return control to the normal flow. The RTE
instruction should be issued at least one instruction after the LDTLB
instruction.

3.8 Memory-mapped TLB configuration
To enable the ITLB and UTLB to be managed by software, their contents can be
read and written by a P2 region program, with a MOV instruction in privileged
mode. Operation is not guaranteed if access is made from a program in another
region. A branch to a region other than the P2 region should be made at least 8
instructions after this MOV instruction. The ITLB and UTLB are allocated to the P4
region in physical address space. VPN, V, and ASID in the ITLB can be accessed as
an address array, PPN, V, SZ, PR, C, and SH as data array 1, and SA and TC as data
array 2. VPN, D, V, and ASID in the UTLB can be accessed as an address array,
PPN, V, SZ, PR, C, D, WT, and SH as data array 1. V and D can be accessed from
both the address array side and the data array side. Only longword access is
possible. Instruction fetches cannot be performed in these regions. For reserved bits,
a write value of 0 should be specified; their read value is undefined.

74 Memory-mapped TLB configuration
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

3.8.1 ITLB address array

The ITLB address array is allocated to addresses 0xF200 0000 to 0xF2FF FFFF in
the P4 region. An address array access requires a 32-bit address field specification
(when reading or writing), and a 32-bit data field specification (when writing).
Information for selecting the entry to be accessed is specified in the address field,
and VPN, V, and ASID to be written to the address array are specified in the data
field.

In the address field, bits [31:24] have the value 0xF2 indicating the ITLB address
array, and the entry is selected by bits [9:8]. As longword access is used, 0 should be
specified for address field bits [1:0].

In the data field, VPN is indicated by bits [31:10], V by bit [8], and ASID by bits
[7:0].

The following two kinds of operation can be used on the ITLB address array:

1 ITLB address array read

VPN, V, and ASID are read into the data field from the ITLB entry
corresponding to the entry set in the address field.

2 ITLB address array write

VPN, V, and ASID specified in the data field are written to the ITLB entry
corresponding to the entry set in the address field.

Figure 14: Memory-mapped ITLB address array

Address field
31 23 0

1 1 1 1 0 0 1 0 E

Data field
31 10 9 0

VVPN

VPN:
V:

 E:

24

Virtual page number
Validity bit
Entry

10 9 8 7

9 8 7

ASID

ASID:
:

Address space identifier
Reserved bits (0 write value, undefined
read value)

Memory-mapped TLB configuration 75
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

3.8.2 ITLB data array 1

ITLB data array 1 is allocated to addresses 0xF300 0000 to 0xF37F FFFF in the P4
region. A data array access requires a 32-bit address field specification (when
reading or writing), and a 32-bit data field specification (when writing). Information
for selecting the entry to be accessed is specified in the address field, and PPN, V,
SZ, PR, C, and SH to be written to the data array are specified in the data field.

In the address field, bits [31:23] have the value 0xF30 indicating ITLB data array 1,
and the entry is selected by bits [9:8].

In the data field, PPN is indicated by bits [28:10], V by bit [8], SZ by bits [7] and [4],
PR by bit [6], C by bit [3], and SH by bit [1].

The following two kinds of operation can be used on ITLB data array 1:

1 ITLB data array 1 read

PPN, V, SZ, PR, C, and SH are read into the data field from the ITLB entry
corresponding to the entry set in the address field.

2 ITLB data array 1 write

PPN, V, SZ, PR, C, and SH specified in the data field are written to the ITLB
entry corresponding to the entry set in the address field.

Figure 15: Memory-mapped ITLB data array 1

Address field
31 23 0

1 1 1 1 0 0 01 1 E

Data field

PPN:
V:
E:

SZ:

24

Physical page number
Validity bit
Entry
Page size bits

10 9 8 7

PR:
C:

SH:
:

Protection key data
Cacheability bit
Share status bit
Reserved bits (0 write value, undefined
read value)

31 2 1 0

V

10 9 8 730 29 28 4 36 5

SZ SHPR

CPPN

76 Memory-mapped TLB configuration
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

The following two kinds of operation can be used on ITLB data array 2:

1 ITLB data array 2 read

SA and TC are read into the data field from the ITLB entry corresponding to the
entry set in the address field.

2 ITLB data array 2 write

SA and TC specified in the data field are written to the ITLB entry
corresponding to the entry set in the address field.

3.8.3 UTLB address array

The UTLB address array is allocated to addresses 0xF600 0000 to 0xF6FF FFFF in
the P4 region. An address array access requires a 32-bit address field specification
(when reading or writing), and a 32-bit data field specification (when writing).
Information for selecting the entry to be accessed is specified in the address field,
and VPN, D, V, and ASID to be written to the address array are specified in the data
field.

In the address field, bits [31:24] have the value 0xF6 indicating the UTLB address
array, and the entry is selected by bits [13:8]. The address array bit [7] association
bit (A bit), specifies whether or not address comparison is performed when writing
to the UTLB address array.

In the data field, VPN is indicated by bits [31:10], D by bit [9], V by bit [8], and ASID
by bits [7:0].

Figure 16: Memory-mapped ITLB data array 2

Address field
31 23 0

1 1 1 1 0 0 1 1 1 E

Data field
31 4 0

TC:
 E:

24

Timing control bit
Entry

89 7

3 2

SA:
:

Space attribute bits
Reserved bits (0 write value, undefined read
value)

10

SA

TC

Memory-mapped TLB configuration 77
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

The following three kinds of operation can be used on the UTLB address array:

1 UTLB address array read

VPN, D, V, and ASID are read into the data field from the UTLB entry
corresponding to the entry set in the address field. In a read, associative
operation is not performed, regardless of whether the association bit specified in
the address field is 1 or 0.

2 UTLB address array write (non-associative)

VPN, D, V, and ASID specified in the data field are written to the UTLB entry
corresponding to the entry set in the address field. The A bit in the address field
should be cleared to 0.

3 UTLB address array write (associative)

When a write is performed with the A bit in the address field set to 1,
comparison of all the UTLB entries is carried out using the VPN specified in the
data field and PTEH.ASID. The usual address comparison rules are followed,
but if a UTLB miss occurs, the result is no operation, and an exception is not
generated. If the comparison identifies a UTLB entry, corresponding to the VPN
specified in the data field, D and V specified in the data field are written to that
entry. If there is more than one matching entry, a data TLB multiple hit
exception results. This associative operation is simultaneously carried out on the
ITLB, and if a matching entry is found in the ITLB, V is written to that entry.
Even if the UTLB comparison results in no operation, a write to the ITLB side
only is performed as long as there is an ITLB match. If there is a match in both
the UTLB and ITLB, the UTLB information is also written to the ITLB.

Figure 17: Memory-mapped UTLB address array

Address field

Data field

VPN:
V:
E:
D:

Virtual page number
Validity bit
Entry
Dirty bit

ASID:
A:

:

Address space identifier
Association bit
Reserved bits (0 write value, undefined
read value)

31 0

VD

10 9 8 730 29 28

A

8 7

ASIDVPN

31 23 2 1 0

1 1 1 1 0 1 1 0 E

24 14 13

78 Memory-mapped TLB configuration
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

3.8.4 UTLB data array 1

UTLB data array 1 is allocated to addresses 0xF700 0000 to 0xF77F FFFF in the P4
region. A data array access requires a 32-bit address field specification (when
reading or writing), and a 32-bit data field specification (when writing). Information
for selecting the entry to be accessed is specified in the address field, and PPN, V,
SZ, PR, C, D, SH, and WT to be written to the data array, are specified in the data
field.

In the address field, bits [31:23] have the value 0xF70 indicating UTLB data array
1, and the entry is selected by bits [13:8].

In the data field, PPN is indicated by bits [28:10], V by bit [8], SZ by bits [7] and [4],
PR by bits [6:5], C by bit [3], D by bit [2], SH by bit [1], and WT by bit [0].

The following two kinds of operation can be used on UTLB data array 1:

1 UTLB data array 1 read

PPN, V, SZ, PR, C, D, SH, and WT are read into the data field, from the UTLB
entry corresponding to the entry set in the address field.

2 UTLB data array 1 write

PPN, V, SZ, PR, C, D, SH, and WT specified in the data field, are written to the
UTLB entry corresponding to the entry set in the address field.

Figure 18: Memory-mapped UTLB data array 1

Address field

Data field

PPN:
V:
E:

SZ:
D:

Physical page number
Validity bit
Entry
Page size bits
Dirty bit

PR:
C:

SH:
WT:

:

Protection key data
Cacheability bit
Share status bit
Write-through bit
Reserved bits (0 write value, undefined
read value)

31 2 1 0

V

10 9 8 730 29 28 4 36 5

PR CPPN

31 23 0

1 1 1 1 0 1 1 1 0 E

24 8 714 13

D

SZ SH WT

PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

4Caches

4.1 Overview

4.1.1 Features

Note: This chapter details both the SH4-103 and SH4-202 variants. Please refer to your
datasheet for specific core details.

The SH-4 CPU core has an on-chip 8-kbyte instruction cache (IC) for instructions
and 16-kbyte operand cache (OC) for data. Half of the memory of the operand cache
(8 kbytes) can also be used as on-chip RAM. The features of these caches are
summarized in Table 15.

The SH4-202 has an on-chip 16-kbyte instruction cache (IC) for instructions and
32-kbyte operand cache (OC) for data. Half of the operand cache (16 kbytes) can also
be used as on-chip RAM. The features of these caches are summarized in Table 15
and Table 16.

The SH-4 CPU supports two 32-byte store queues (SQ) to perform high-speed writes
to external memory. The features of the SQ are summarized in Table 17.

Item Instruction cache Operand cache

Capacity 8-kbyte cache 16-kbyte cache or 8-kbyte
cache + 8-kbyte RAM

Type Direct mapping Direct mapping

Line size 32 bytes 32 bytes

Table 15: Cache features (SH4-103, SH4-202 in the compatible mode)

80 Overview
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Entries 256 512

Write method Copy-back/write-through
selectable

Item Instruction cache Operand cache

Table 15: Cache features (SH4-103, SH4-202 in the compatible mode)

Item Instruction cache Operand cache

Capacity 16-kbyte cache 32-kbyte cache or 16-kbyte

cache + 16-kbyte RAM

Type 2way set associative 2way set associative

Line size 32 bytes 32 bytes

Entries 256 entry /way 512 entry / way

Write method Copy-back/write-through

selectable

Replace algorithm LRU LRU

Table 16: Cache features (SH4-202 in the enhanced mode)

Item Store queues

Capacity 2 × 32 bytes

Addresses 0xE000 0000 to 0xE3FF FFFF

Write Store instruction

Write-back Prefetch instruction

Access right MMU off: according to MMUCR.SQMD

MMU on: according to individual page PR

Table 17: Store queue features

Register descriptions 81
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

4.2 Register descriptions
There are three cache and store queue related control registers.

4.2.1 Cache control register (CCR)

CCR can be accessed by longword-size access from 0xFF00001C in the P4 region and
0x1F00001C in Area 7. The CCR bits are used to modify the cache settings described
below. CCR modifications must only be made by a program in the non-cached P2
region. After CCR is updated, an instruction that performs data access to the P0, P1,
P3, or U0 regions, should be located at least four instructions after the CCR update
instruction. Also, a branch instruction to the P0, P1, P3, or U0 regions should be
located at least eight instructions after the CCR update instruction.

Name Abbreviation R/W
Initial

valuea
P4

addressb
Area 7

addressb
Access
size

Cache control
register

CCR R/W 0x0000 0000 0xFF00 001C 0x1F00 001C 32

Queue address
control register 0

QACR0 R/W Undefined 0xFF00 0038 0x1F00 0038 32

Queue address
control register 1

QACR1 R/W Undefined 0xFF00 003C 0x1F00 003C 32

Table 18: Cache control registers

a. The initial value is the value after a power-on or manual reset.

b. This is the address when using the virtual/physical address space P4 area. The area 7
address is the address used when making an access from physical address space area
7 using the TLB.

82 Register descriptions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

CCR

Field Bits Size Synopsis Type

OCE 0 1 OC enable. RW

Operation Indicates whether or not the OC is to be used. When address trans-
lation is performed, the OC cannot be used unless the C bit in the
page management information is also 1.

0: OC not used.

1: OC used.

Power-on reset Undefined

WT 1 1 Write-through enable. RW

Operation Indicates the P0, U0 and P3 region cache write mode. When
address translation is performed, the value of the WT bit in the page
management information has priority.

0: Copy-back mode.

1: Write-through mode.

Power-on reset Undefined

CB 2 1 Copy-back bit. RW

Operation Indicates the P1 region cache write mode.

0: Write-through mode.

1: Copy-back mode.

Power-on reset Undefined

OCI 3 1 OC invalidation bit. RW

Operation When 1 is written to this bit, the V and U bits of all OC entries are
cleared to 0. This bit always returns 0 when read.

Power-on reset Undefined

Table 19: CCR register description

Register descriptions 83
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

ORA 5 1 OC RAM enable bit. RW

Operation 0: Normal mode (all of OC is used as cache).

1: RAM mode (half of OC is used as cache, the other half is used as
RAM. Please refer to Section 4.3.6).

Power-on reset Undefined

OIX 7 1 OC index enable bit. RW

Operation 0: Address bits [13:5] used for OC entry selection.

1: Address bits [25] and [12:5] used for OC entry selection.

Note: In SH4-202, when CCR.ORA is set to 1, CCR.OIX must be set
to 0. Please refer to Section 4.3.7.

Power-on reset Undefined

ICE 8 1 IC enable bit. RW

Operation Indicates whether or not the IC is to be used. When address transla-
tion is to be performed, the IC cannot be used unless the C bit in the
page management information is also 1.

0: IC not used.

1: IC used.

Power-on reset Undefined

ICI 11 1 IC invalidation bit. RW

Operation When 1 is written to this bit, the V bits of all IC entries are cleared to
0. This bit always returns 0 when read.

Power-on reset Undefined

IIX 15 1 IC index enable bit. RW

Operation 0: Address bits [12:5] used for IC entry selection.

1: Address bits [25] and [11:5] used for IC entry selection.

Power-on reset Undefined

CCR

Field Bits Size Synopsis Type

Table 19: CCR register description

84 Register descriptions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

4.2.2 Queue address control register 0 (QACR0)

QACR0 can be accessed by longword-size access from 0xFF000038 in the P4 region,
and 0x1F000038 in Area 7.

EMODE 31 1 Enhanced mode SH4-202 only. RW

Operation Indicates whether or not the OC is to be used in enhanced mode.

0: Compatible mode*.

1: Enhanced mode.

*: SH4-202 is not compatible with SH4-103 in the following
conditions:
1. OC index mode and RAM mode.
2. Address map in RAM mode.

Power-on reset Undefined

Reserved
bits

4, 6,
[9,10]
[12,14]
[16]

23

Power-on reset

CCR

Field Bits Size Synopsis Type

Table 19: CCR register description

QACR0

Field Bits Size Synopsis Type

Area [2,4] 3 Queue address control register 0. RW

Operation QACR0 specifies the area onto which store queue 0 (SQ0) is
mapped when the MMU is off.

Power-on reset Undefined

Table 20: QACR0

Register descriptions 85
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

4.2.3 Queue address control register 1 (QACR1)

QACR1 can be accessed by longword-size access from 0xFF00003C in the P4 region,
and 0x1F00003C in Area 7.

Reserved bits [0,1],
[5,31]

29

Power-on reset

QACR0

Field Bits Size Synopsis Type

Table 20: QACR0

QACR1

Field Bits Size Synopsis Type

Area [2,4] 3 Queue address control register 1. RW

Operation QACR1 specifies the area onto which store queue 1 (SQ1) is
mapped when the MMU is off.

Power-on reset Undefined

Reserved bits [0,1],
[5,31]

29

Power-on reset

Table 21: QACR1

86 Operand cache (OC)
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

4.3 Operand cache (OC)

4.3.1 Configuration

Figure 19 shows the configuration of the operand cache for the SH4-103 while
Figure 20 shows the same for the SH4-202.

Figure 19: Configuration of operand cache

31 26 25 5 4 3 2 1

LW0

32 bits

LW1

32 bits

LW2

32 bits

LW3

32 bits

LW4

32 bits

LW5

32 bits

LW6

32 bits

LW7

32 bits

MMU

RAM area
determination

ORAOIX
[13] [12]

[11:5]

511 19 bits 1 bit 1 bit

Tag address U V

Address array Data array

E
nt

ry
 s

el
ec

tio
n

Longword (LW) selection

Effective address

3
9

22

19

0

Write dataRead data

Hit signal

Compare

13 12 11 10 9 0

Operand cache (OC) 87
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

The operand cache for the SH4-103 consists of 512 cache lines, each composed of a
19-bit tag, V bit, U bit, and 32-byte data.

The SH4-202 operand cache is 2 way associative cache and consists of 512 cache
lines/way, each composed of a 19-bit tag, V bit and 32-byte data.

• Tag

Stores the upper 19 bits of the 29-bit external address of the data line to be
cached. The tag is not initialized by a power-on or manual reset.

Figure 20: Configuration of operand cache on SH4-202

88 Operand cache (OC)
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

• V bit (validity bit)

Setting this bit to 1, indicates that valid data is stored in the cache line. The V
bit is initialized to 0 by a power-on reset, but retains its value in a manual reset.

• U bit (dirty bit)

The U bit is set to 1 if data is written to the cache line, while the cache is being
used in copy-back mode, that is the U bit indicates a mismatch between the data
in the cache line and the data in external memory. The U bit is never set to 1
while the cache is being used in write-through mode, unless it is modified by
accessing the memory-mapped cache (see Section 4.5: Memory-mapped cache
configuration on page 99). The U bit is initialized to 0 by a power-on reset, but
retains its value in a manual reset.

• Data field

The data field holds 32 bytes (256 bits) of data per cache line. The data array is
not initialized by a power-on or manual reset.

• LRU (SH4-202 only)

With the 2-way set associative system, up to 2 data with the same entry address
(address [13-5]) can be registered in the cache. When an entry is registered, the
LRU shows which of the 2 ways it is recorded in. There is one LRU bit per entry,
controlled by hardware. A least-recently-used (LRU) algorithm is used to select
the way. LRU bits cannot be read and written by software. LRU bits indicate the
way to be replaced and to be accessed. If the access is a cache hit access and the
accessed way is incorrect, the other way is accessed again.

The LRU bits are initialized to 0 by a power-on reset, but are not initialized by a
manual reset.

4.3.2 Read operation

When the OC is enabled (CCR.OCE = 1) and data is read by means of an effective
address from a cacheable area, the cache operates as follows:

1 The tag, V bit, and U bit are read from the cache line, indexed by effective
address bits [13:5].

2 The tag is compared with bits [28:10] of the address resulting from effective
address translation by the MMU. Operation is as described in Table 2.

Operand cache (OC) 89
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Tag
match

V bit U bit Operation Description

Yes 1 - Cache hit The data indexed by bits [4:0] of the effective address, is
read from the cache line indexed by bits [13:5], in
accordance with the access size (quadword/longword/
word/byte).

Yes 0 - Cache miss
(no
write-back)

Data from the external memory space, corresponding to
the effective address, is written into the cache line. Data
reading is performed, using the critical word first method,
and when the date arrives in the cache, the read data is
returned to the CPU. The CPU continues to execute the
next process, while the cache line of data is being read.
When reading of one line of data is completed, the tag
corresponding to the effective address is recorded in the
cache, and the V bit is set to 1.

No 0 -

No 1 0

No 1 1 Cache miss
(with
write-back)

The tag and data field of the cache line, indexed by
effective address bits [13:5], are saved in the write-back
buffer. Then, data from the external memory space,
corresponding to the effective address, is written into the
cache line.Data reading is performed, using the critical
word first method, and when the date arrives in the
cache, the read data is returned to the CPU. The CPU
continues to execute the next process, while the cache
line of data is being read. When reading of one line of
data is completed, the tag corresponding to the effective
address is recorded in the cache, the V bit is set to 1,
and the U bit is set to 0. The data in the write-back buffer
is then written back to the external memory.

Table 22: OC read operation

90 Operand cache (OC)
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

4.3.3 Write operation

When the OC is enabled (CCR.OCE = 1) and data is written by means of an effective
address to a cacheable area, the cache operates as follows:

1 The tag, V bit, and U bit are read from the cache line indexed by effective
address bits [13:5].

2 The tag is compared with bits [28:10] of the address resulting from effective
address translation by the MMU. In copy back, operation is per Table 23. In
write through mode it is per Table 24.

Tag match V bit U bit Operation Description

Yes 1 - Cache hit
(copy-back)

A data write for the data indexed by bits [4:0] is per-
formed, in accordance with the access size (quadword/
longword/word/byte).

Yes 0 - Cache miss
(no
copy-back/
write-back)

A data write for the data indexed by bits [4:0] is per-
formed, in accordance with the access size (quadword/
longword/word/byte). Then, data from the external mem-
ory corresponding to the effective address, is read into
the cache line. Data reading is performed, using the crit-
ical word first method, and one cache line of data is
read, excluding the written data.The CPU continues to
execute the next process, while the cache line of data is
being read. When reading of one line of data is com-
pleted, the tag corresponding to the effective address is
recorded in the cache, the V bit and U bit are both set to
1.

No 0 -

No 1 0

Table 23: OC write operation, with copy-back

Operand cache (OC) 91
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

No 1 1 Cache miss
(with
copy-back/
write-back)

The tag and data field of the cache line, indexed by
effective address bits [13:5] are first saved in the
write-back buffer. Then, a data write for the data indexed
by bits [4:0], is performed in accordance with the access
size (quadword/longword/word/byte). Data from the
external memory space, corresponding to the effective
address, is read into the cache line. Data reading is per-
formed, using the critical word first method, and one
cache line of data is read, excluding the written data.The
CPU continues to execute the next process, while the
cache line of data is being read. When reading of one
line of data is completed, the tag corresponding to the
effective address is recorded in the cache, the V bit and
U bit are both set to 1. The data in the write back buffer
is then written back to external memory.

Tag match V bit U bit Operation Description

Yes 1 - Cache-hit
(write-through)

A data write for the data indexed by bits [4:0], is per-
formed in accordance with the access size (quadword/
longword/word/byte). The U bit is set to 1.

Yes 0 - Cache miss
(write-through)

A write is performed to the external memory, corre-
sponding to the effective address. A write to cache is
not performed.No 0 -

No 1 0

No 1 1

Table 24: OC write operation, with write-through

Tag match V bit U bit Operation Description

Table 23: OC write operation, with copy-back

92 Operand cache (OC)
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

4.3.4 Write-back buffer

The write-back buffer enables priority to be given to data reads, and improves
performance. When a cache miss makes the purge of a dirty cache entry into
external memory necessary, the cache entry is held in the write-back buffer. The
write-back buffer contains one cache line of data and the physical address of the
purge destination.

4.3.5 Write-through buffer

When writing data in write-through mode or writing to a non-cacheable area, data
is held in a 64-bit buffer. This allows the CPU to proceed to the next operation as
soon as the write to the write-through buffer is completed, without waiting for
completion of the write to external memory.

4.3.6 RAM mode

Setting CCR.ORA to 1 enables 8 kbytes of the operand cache to be used as RAM. The
operand cache entries used as RAM are, entries 128 to 255 and 384 to 511. Other
entries can still be used as cache. RAM can be accessed using addresses 0x7C00
0000 to 0x7FFF FFFF. Byte-, word-, longword-, and quadword-size data reads and
writes can be performed in the operand cache RAM area. Instruction fetches cannot
be performed in this area.

Note: OC index and RAM mode cannot be used in the SH4-202.

Figure 21: Configuration of write-back buffer

LW7Physical address bits [28:5] LW6LW5LW4LW3LW2LW1LW0

Figure 22: Configuration of write-through buffer

Physical address bits [28:0] LW1LW0

Operand cache (OC) 93
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

An example of RAM use is shown below. Here, the 4 kbytes comprising OC entries
128 to 256 are designated as RAM area 1, and the 4 kbytes comprising OC entries
384 to 511 as RAM area 2.

• When OC index mode is off (CCR.OIX = 0):

Thus, to secure a continuous 8-kbyte RAM area, the area from 0x7C00 1000 to
0x7C00 2FFF can be used, for example.

• When OC index mode is on (CCR.OIX = 1):

Address start Address end Size RAM area

0x7C00 0000 0x7C00 0FFF 4-kbytes 1

0x7C00 1000 0x7C00 1FFF 1

0x7C00 2000 0x7C00 2FFF 2

0x7C00 3000 0x7C00 3FFF 2

0x7C00 4000 0x7C00 4FFF 1a

a. RAM areas 1 and 2 then repeat evert 8Kbytes upto 0x7FFF FFFF.

Table 25: RAM use when OC index mode is off

Address start Address end Size RAM area

0x7C00 0000 0x7C00 0FFF 4-kbytes 1

0x7C00 1000 0x7C00 1FFF 1

0x7C00 2000 0x7C00 2FFF 1

... ... 1

0x7DFF F000 0x7DFF FFFF 1

0x7E00 0000 0x7E00 0FFF 2

0x7E001000 0x7E00 1FFF 2

... ... 2

0x7FFF F000 0x7FFF FFFF 2

Table 26: RAM use when OC index mode is on

94 Operand cache (OC)
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

As the distinction between RAM areas 1 and 2 is indicated by address bit [25],
the area from 0x7DFF F000 to 0x7E00 0FFF should be used to secure a
continuous 8-kbyte RAM area.

RAM Mode of SH4-202

Setting CCR.ORA to 1 enables half of the operand cache to be used as RAM. The
operand cache entries used as RAM are entries 256 to 511 in the compatible mode.
The operand cache entries used as RAM are entries 256 to 511 of the each way in the
enhanced mode. Other entries can still be used as cache. RAM can be accessed using
addresses H'7C00 0000 to H'7FFF FFFF. Byte-, word-, longword-, and
quadword-size data reads and writes can be performed in the operand cache RAM
area. Instruction fetches cannot be performed in this area.

In the SH7751R and RAM mode, OC index mode cannot be used.

RAM mode address map of SH4-202

An example of RAM use is shown below. Here, the 8 kbytes comprising OC entries
256 to 511 of way 0 are designated as RAM area 1, and the 8 kbytes comprising OC
entries 256 to 511 of way 1 as RAM area 2.

In the compatible mode (CCR.EMODE=0)

0x7C00 0000 to 0x7C00 1FFF (8 kB): corresponds to RAM area (entry 256-511)
0x7C00 2000 to 0x7C00 3FFF (8 kB): corresponds to RAM area (entry 256-511)
: : :
RAM areas then repeat every 8 kbytes up to 0x7FFF FFFF.

In the enhanced mode (CCR.EMODE=1)

0x7C00 0000 to 0x7C00 1FFF (8 kB): Corresponds to RAM area 1
0x7C00 2000 to 0x7C00 3FFF (8 kB): Corresponds to RAM area 2
0x7C00 4000 to 0x7C00 5FFF (8 kB): Corresponds to RAM area 1
0x7C00 6000 to 0x7C00 7FFF (8 kB): Corresponds to RAM area 2
: : :
RAM areas 1 and 2 then repeat every 16 kbytes up to 0x7FFF FFFF.

Operand cache (OC) 95
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

4.3.7 OC index mode

 In normal mode, with CCR.OIX cleared to 0, OC indexing is performed using bits
[13:5] of the effective address. Using index mode, with CCR.OIX set to 1, allows the
OC to be handled as two 8-kbyte areas, by means of effective address bit [25]. This
partitioning makes it possible for the software to make more efficient use of the
cache.

4.3.8 Coherency between cache and external memory

Coherency between cache and external memory should be assured by software. In
the SH-4 CPU core, the following four new instructions are supported for cache
operations. Details of these instructions are given in the Instruction Descriptions
chapter.

4.3.9 Prefetch operation

The SH-4 CPU core supports a prefetch instruction, to reduce the cache fill penalty
incurred as the result of a cache miss. If it is known that a cache miss will result
from a read or write operation, it can be prevented by using the prefetch instruction
to fill the cache with data before the operation, and so improve software
performance. If a prefetch instruction is executed for data already held in the cache,
or if the prefetch address results in a UTLB miss or a protection violation, the result
is no operation, and an exception is not generated. Details of the prefetch
instruction are given in the Instruction Descriptions chapter.

Prefetch instruction: PREF @Rn

Invalidate instruction: OCBI @Rn Cache invalidation (no write-back)

Purge instruction: OCBP @Rn Cache invalidation (with write-back)

Write-back instruction: OCBWB @Rn Cache write-back

Allocate instruction: MOVCA.L
R0,@Rn

Cache allocation

96 Instruction cache (IC)
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

4.4 Instruction cache (IC)

4.4.1 Configuration

Figure 23 shows the configuration of the instruction cache for SH4-103, while
Figure 24 shows the IC for the SH4-202.

Figure 23: Configuration of instruction cache on the SH4-103

LW0

32 bits

LW1

32 bits

LW2

32 bits

LW3

32 bits

LW4

32 bits

LW5

32 bits

LW6

32 bits

LW7

32 bits255 19 bits 1 bit

Tag address V

Address array

Longword (LW) selection

Data array

0

Read data

Hit signal

Compare

31 26 25 5 4 3 2 1

MMU

IIX
[12]

[11:5]

E
nt

ry
 s

el
ec

tio
n

Effective address

8 3

22

19

13 12 11 10 9 0

Instruction cache (IC) 97
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

The instruction cache for the SH4-103 consists of 256 cache lines, each composed of
a 19-bit tag, V bit, and 32-byte data (16 instructions).

The instruction cache for the SH4-202 consists of 256 cache lines/way, each
composed of a 19-bit tag, V bit, and 32-byte data (16 instructions).

• Tag

Stores the upper 19 bits of the 29-bit external memory address of the data line to
be cached. The tag is not initialized by a power-on or manual reset.

• V bit (validity bit)

Setting this bit to 1Indicates that valid data is stored in the cache line. The V bit
is initialized to 0 by a power-on reset, but retains its value in a manual reset.

Figure 24: Configuration of instruction cache on the SH4-202

Effective address

31 26 13 12 11 10 5 4 2 027 25 9

IIX

[12]

[11:5]

Entry selection

Longword (LW)
selection

22 8
3

Address array (Way0, Way1) Data array (Way0, Way1)

0

LRU

MMU

Hit signal

Compare

Way0

Compare
Way1

19 bit 1 bit 32 bit 1 bit32 bit32 bit 32 bit32 bit 32 bit32 bit 32 bit

Tag address V LW0 LW1 LW2 LW3 LW4 LW5 LW6 LW7

Read data

19

98 Instruction cache (IC)
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

• Data array

The data field holds 32 bytes (256 bits) of data per cache line. The data array is
not initialized by a power-on or manual reset.

• LRU (SH4-202 only)

With the 2-way set associative system, up to 2 data with the same entry address
(address [12-5]) can be registered in the cache. When an entry is registered, the
LRU shows which of the 2 ways it is recorded in. There is one LRU bit per entry,
controlled by hardware. A least-recently-used (LRU) algorithm is used to select
the way. LRU bits cannot be read and written by software.

The LRU bits are initialized to 0 by a power-on reset, but are not initialized by a
manual reset.

4.4.2 Read operation

When the IC is enabled (CCR.ICE = 1), and instruction fetches are performed by
means of an effective address from a cacheable area, the instruction cache operates
as follows:

1 The tag and V bit are read from the cache line indexed by effective address bits
[12:5].

2 The tag is compared with bits [28:10] of the address resulting from effective
address translation by the MMU:

Tag V bit Operation Description

Matches 1 Cache hit Data indexed by effective address bits [4:2], is read as
an instruction.

Matches 0 Cache miss Data is read into the cache line, from the external mem-
ory space corresponding to the effective address. Data
reading is performed, using the critical word first method,
and when the data arrives in the cache, the read data is
returned to the CPU as an instruction. When reading of
one line of data is completed, the tag corresponding to
the effective address is recorded in the cache, and 1 is
written to the V bit.

Does not
match

0

Does not
match

1

Table 27: IC read operation

Memory-mapped cache configuration 99
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

4.4.3 IC index mode

 In normal mode, with CCR.IIX cleared to 0, IC indexing is performed using bits
[12:5] of the effective address. Using index mode, with CCR.IIX set to 1, allows the
IC to be handled as two 4-kbyte areas by means of effective address bit [25]. This
provides efficient use of the cache.

4.5 Memory-mapped cache configuration
To enable the IC and OC to be managed by software, IC content can be read and
written by a P2 region program, with a MOV instruction in privileged mode.
Behavior is undefined if access is made from a program in another region. In this
case, a branch to the P0, U0, P1, or P3 regions should be made at least 8 instructions
after this MOV instruction.

The OC content can be read and written by a P1 and P2 regions program, with a
MOV instruction in privileged mode. Behavior is undefined if access is made from a
program in another region. In this case, a branch to the P0, U0, or P3 regions should
be made at least 8 instructions after this MOV instruction.

The IC and OC are allocated to the P4 region in physical memory space. Only
(longword) data accesses can be used on both the IC address array and data array,
and the OC address array and data array. Instruction fetches cannot be performed
in these regions. For reserved bits, a write value of 0 should be specified; their read
value is undefined.

4.5.1 IC address array

The IC address array is allocated to addresses 0xF000 0000 to 0xF0FF FFFF in the
P4 region. An address array access requires a 32-bit address field specification
(when reading or writing), and a 32-bit data field specification. The entry to be
accessed is specified in the address field, and the write tag and V bit are specified in
the data field.

In the address field, bits [31:24] have the value 0xF0 indicating the IC address
array, and the entry is specified by bits [12:5]. CCR.IIX has no effect on this entry
specification. The address array bit [3], the association bit (A bit), specifies whether
or not association is performed when writing to the IC address array. As only
longword access is used, 0 should be specified for address field bits [1:0].

100 Memory-mapped cache configuration
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

In the data field, the tag is indicated by bits [31:10], and the V bit by bit [0]. As the
IC address array tag is 19 bits in length, data field bits [31:29] are not used in the
case of a write in which association is not performed. Data field bits [31:29] are used
for the virtual address specification, only in the case of a write in which association
is performed.

The following three kinds of operation can be used on the IC address array:

1 IC address array read
The tag and V bit are read into the data field from the IC entry corresponding to
the entry set in the address field. In a read, associative operation is not
performed, regardless of whether the association bit specified in the address
field is 1 or 0.

2 IC address array write (non-associative)
The tag and V bit specified in the data field are written to the IC entry
corresponding to the entry set in the address field. The A bit in the address field
should be cleared to 0.

3 IC address array write (associative)
When a write is performed with the A bit in the address field set to 1, the tag
stored in the entry specified in the address field, is compared with the tag
specified in the data field. If the MMU is enabled at this time, comparison is
performed after the virtual address, specified by data field bits [31:10], has been
translated to a physical address using the ITLB. If the addresses match and the
V bit is 1, the V bit specified in the data field is written into the IC entry. In other
cases, no operation is performed. This operation is used to invalidate a specific
IC entry. If an ITLB miss occurs during address translation, or the comparison
shows a mismatch, an interrupt is not generated, no operation is performed, and
the write is not executed. If an instruction TLB multiple hit exception occurs
during address translation, processing switches to the instruction TLB multiple
hit exception handling routine.

Figure 25: Memory-mapped IC address array

Address field
31 23 12 5 4 3 2 1 0

1 1 1 1 0 0 0 0 Entry A

Data field
31 10 9 1 0

VTag address

V
A

24 13

: Validity bit
: Association bit
: Reserved bits (0 write value, undefined read value)

Memory-mapped cache configuration 101
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

4.5.4 IC data array

The IC data array is allocated to addresses 0xF100 0000 to 0xF1FF FFFF in the P4
region. A data array access requires a 32-bit address field specification (when
reading or writing), and a 32-bit data field specification. The entry to be accessed is
specified in the address field, and the longword data to be written is specified in the
data field.

In the address field, bits [31:24] have the value 0xF1 indicating the IC data array,
and the entry is specified by bits [12:5]. CCR.IIX has no effect on this entry
specification. Address field bits [4:2] are used for the longword data specification in
the entry. As only longword access is used, 0 should be specified for address field bits
[1:0].

The data field is used for the longword data specification.

The following two kinds of operation can be used on the IC data array:

1 IC data array read
Longword data is read into the data field, from the data specified by the
longword specification bits in the address field in the IC entry, corresponding to
the entry set in the address field.

2 IC data array write
The longword data specified in the data field is written, for the data specified by
the longword specification bits in the address field in the IC entry, corresponding
to the entry set in the address field.

Figure 26: Memory-mapped IC data array

Address field
31 23 12 5 4 2 1 0

1 1 1 1 0 0 0 1 Entry L

Data field
31 0

Longword data

L

24 13

: Longword specification bits
: Reserved bits (0 write value, undefined read value)

102 Memory-mapped cache configuration
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

4.5.5 OC address array

The OC address array is allocated to addresses 0xF400 0000 to 0xF4FF FFFF in the
P4 region. An address array access requires a 32-bit address field specification
(when reading or writing), and a 32-bit data field specification. The entry to be
accessed is specified in the address field, and the write tag, U bit, and V bit are
specified in the data field.

In the address field, bits [31:24] have the value 0xF4 indicating the OC address
array, and the entry is specified by bits [13:5]. CCR.OIX and CCR.ORA have no
effect on this entry specification. The address array bit [3], association bit (A bit),
specifies whether or not association is performed when writing to the OC address
array. As only longword access is used, 0 should be specified for address field bits
[1:0].

In the data field, the tag is indicated by bits [31:10], the U bit by bit [1], and the V
bit by bit [0]. As the OC address array tag is 19 bits in length, data field bits [31:29]
are not used in the case of a write in which association is not performed. Data field
bits [31:29] are used for the virtual address specification only in the case of a write
in which association is performed.

The following three kinds of operation can be used on the OC address array:

1 OC address array read

The tag, U bit, and V bit are read into the data field from the OC entry
corresponding to the entry set in the address field. In a read, associative
operation is not performed, regardless of whether the association bit specified in
the address field is 1 or 0.

2 OC address array write (non-associative)

The tag, U bit, and V bit specified in the data field are written to the OC entry
corresponding to the entry set in the address field. The A bit in the address field
should be cleared to 0.

When a write is performed to a cache line for which the U bit and V bit are both
1, after write-back of that cache line, the tag, U bit, and V bit specified in the
data field are written.

Memory-mapped cache configuration 103
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

3 OC address array write (associative)

When a write is performed with the A bit in the address field set to 1, the tag
stored in the entry specified in the address field is compared with the tag
specified in the data field. If the MMU is enabled at this time, comparison is
performed after the virtual address specified by data field bits [31:10] has been
translated to a physical address using the UTLB. If the addresses match and the
V bit is 1, the U bit and V bit specified in the data field are written into the OC
entry. This operation is used to invalidate a specific OC entry. In other cases, no
operation is performed. If the OC entry U bit is 1, and 0 is written to the V bit or
to the U bit, write-back is performed. If a UTLB miss occurs during address
translation, or the comparison shows a mismatch, an exception is not generated,
no operation is performed, and the write is not executed. If a data TLB multiple
hit exception occurs during address translation, processing switches to the data
TLB multiple hit exception handling routine.

4.5.6 OC data array

The OC data array is allocated to addresses 0xF500 0000 to 0xF5FF FFFF in the P4
region. A data array access requires a 32-bit address field specification (when
reading or writing), and a 32-bit data field specification. The entry to be accessed is
specified in the address field, and the longword data to be written is specified in the
data field.

In the address field, bits [31:24] have the value 0xF5 indicating the OC data array,
and the entry is specified by bits [13:5]. CCR.OIX and CCR.ORA have no effect on
this entry specification. Address field bits [4:2] are used for the longword data
specification in the entry. As only longword access is used, 0 should be specified for
address field bits [1:0].

Figure 27: Memory-mapped OC address array

Address field
31 23 5 4 3 2 1 0

1 1 1 1 0 1 0 0 Entry A

Data field
31 10 9 1 0

VTag address

24 1314

2

U

V
U
A

: Validity bit
: Dirty bit
: Association bit
: Reserved bits (0 write value, undefined read value)

104 Memory-mapped cache configuration
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

The data field is used for the longword data specification.

The following two kinds of operation can be used on the OC data array:

1 OC data array read

Longword data is read into the data field, from the data specified by the
longword specification bits in the address field, in the OC entry corresponding to
the entry set in the address field.

2 OC data array write

The longword data specified in the data field is written for the data specified by
the longword specification bits in the address field in the OC entry
corresponding the entry set in the address field. This write does not set the U bit
to 1 on the address array side.

Memory-mapped OC configuration in the enhanced mode (SH4-202)

• Normal mode (0xF500 3FFF (16 kB): Corresponds to Way0 (entry 0 - 511)
0xF500 4000 to 0xF500 7FFF (16 kB): Corresponds to Way1 (entry 0 - 511)
 : : :
Cache area then repeat every 32 kbytes up to 0xF5FF FFFF.

• RAM mode (CCR.ORA=1)

0xF500 0000 to 0xF500 1FFF (8 kB): Corresponds to Way0 (entry 0 - 255)
0xF500 2000 to 0xF500 3FFF (8 kB): Corresponds to Way1 (entry 0 - 255)
 : : :
Cache area then repeat every 16 kbytes up to 0xF5FF FFFF.

Figure 28: Memory-mapped OC data array

Address field
31 23 5 4 2 1 0

1 1 1 1 0 1 0 1 Entry L

Data field
31 0

Longword data

24 1314

L : Longword specification bits
: Reserved bits (0 write value, undefined read value)

Store queues 105
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

4.6 Store queues
Two 32-byte store queues (SQs) are supported to perform high-speed writes to
external memory. When not using the SQs, the low power dissipation power-down
modes, in which SQ functions are stopped, can be used. The queue address control
registers (QACR0 and QACR1) cannot be accessed while SQ functions are stopped.
Refer to the product level documentation of clock and power management for the
details on stopping SQ functions.

4.6.1 SQ configuration

There are two 32-byte store queues, SQ0 and SQ1, as shown in Figure 29. These two
store queues can be set independently.

Item Store queues

Capacity 2 * 32

Addresses 0xE000 0000 to 0xE3FF FFFF

Write Store instruction (1-cycle write)

Write-back Prefetch instruction

Access right MMU off: according to MMUCR.SQMD

MMU on: according to individual page PR

Table 28: Store queue features

Figure 29: Store queue configuration

SQ0 SQ0[0] SQ0[1] SQ0[2] SQ0[3] SQ0[4] SQ0[5] SQ0[6] SQ0[7]

SQ1 SQ1[0] SQ1[1] SQ1[2] SQ1[3] SQ1[4] SQ1[5] SQ1[6] SQ1[7]

4B 4B 4B 4B 4B 4B 4B 4B

106 Store queues
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

4.6.2 SQ writes

A write to the SQs can be performed using a store instruction on P4 area 0xE000
0000 to 0xE3FF FFFC. A longword or quadword access size can be used. The
meaning of the address bits is as follows:

4.6.3 SQ reads (SH4-202 only)

A read from the SQs can be performed using a load instruction on P4 area 0xFF00
1000 to 0xFF00 103C. A longword access size can be used. The meaning of the
address bits is as follows:

4.6.4 Transfer to external memory

Transfer from the SQs to external memory can be performed with the prefetch
instruction (PREF). Issuing a PREF instruction for 0xE000 0000 to 0xE3FF FFFC
in the P4 region, starts a burst transfer from the SQs to external memory. The burst
transfer has a fixed length of 32 bytes, and the start address must be at a 32-byte
boundary. While the contents of one SQ are being transferred to external memory,
the other SQ can be written to, without incurring a penalty cycle. A write to the SQ
being transferred to external memory is suspended until the transfer to external
memory is completed.

The SQ transfer destination external address bit [28:0] specification is as shown
below, according to whether the MMU is on or off.

[31:26]: 111000 Store queue specification

[25:6]: Don’t care Used for external memory transfer/access right

[5]: 0/1 0: SQ0 specification 1: SQ1 specification

[4:2]: LW specification Specifies longword position in SQ0/SQ1

[1:0] 00 Fixed at 0

[31:6]: 0xFF00100 Store queue specification

[5]: 0/1 0: SQ0 specification 1: SQ1 specification

[4:2]: LW specification Specifies longword position in SQ0/SQ1

[1:0]: 00 Fixed at 0

Store queues 107
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

• When MMU is on

The SQ area (0xE000 0000 to 0xE3FF FFFF) is set in VPN of the UTLB, and the
transfer destination external address is set in PPN. The ASID, V, SZ, SH, PR,
and D bits have the same meaning as for normal address translation, but the C
and WT bits have no meaning with regard to this page.

When a prefetch instruction is issued for the SQ area, address translation is
performed and external memory address bits [28:10] are generated in
accordance with the SZ bit specification. For external address bits [9:5], the
address prior to address translation is generated in the same way as when the
MMU is off. External address bits [4:0] are fixed at 0. Transfer from the SQs to
external is performed to this address.

If SQ access is enabled by MMUCR.SQMD, in privileged mode only, an address
error will be flagged in user mode, even if address translation is successful.

• When MMU is off

• The SQ area (0xE000 0000 to 0xE3FF FFFF) is specified as the address at which
a prefetch is performed. The meaning of address bits [31:0] is as follows:

External address bits [28:26], which cannot be generated from the above address,
are generated from the QACR0/1 registers.

QACR0 [4:2]: External address bits [28:26] corresponding to SQ0

QACR1 [4:2]: External address bits [28:26] corresponding to SQ1

External address bits [4:0] are always fixed at 0 since burst transfer starts at a
32-byte boundary.

[31:26]: 111000 Store queue specification

[25:6]: Address External memory address bits [25:6]

[5]: 0/1 0: SQ0 specification

1: SQ1 specification and external memory address bit [5]

[4:2]: Don’t care No meaning in a prefetch

[1:0] 00 Fixed at 0

108 Store queues
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Determination of SQ access exception

Determination of an exception in a write to an SQ or transfer to external memory
(PREF instruction) is performed as follows according to whether the MMU is on or
off. In the SH7751, if an exception occurs in as SQ Write, the SQ contents may be
corrupted. In the SH7751R, if an exception occurs in as SQ Write, SQ write access is
cancelled and the data before the SQ write access is kept. If an exception occurs in
transfer from an SQ to external memory, the transfer to external memory will be
aborted.

• When MMU is on

Operation is in accordance with the address translation information recorded in
the UTLB, and MMUCR.SQMD. Write type exception judgment is performed for
writes to the SQs, and read type for transfer from the SQs to external memory
(PREF instruction), and a TLB miss exception, protection violation exception, or
initial page write exception is generated. However, if SQ access is enabled, in
privileged mode only, by MMUCR.SQMD, an address error will be flagged in
user mode even if address translation is successful.

• When MMU is off

Operation is in accordance with MMUCR.SQMD.

0: Privileged/user access possible

1: Privileged access possible

If the SQ area is accessed in user mode when MMUCR.SQMD is set to 1, an
address error will be flagged.

PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

5Exceptions

5.1 Overview
The process of responding to an extraordinary event such as a reset, a general
exception (trap) or an interrupt, is called exception handling.

Exception handling is performed by user supplied special routines, that are
executed by the CPU when one of these extraordinary events is encountered.

5.2 Register descriptions
There are three registers related to exception handling. These are allocated to
memory, and can be accessed by specifying the P4 address or Area 7 address.

Name Abbreviation R/W Initial valuea
P4

addressb
Area 7

addressB
Access
size

TRAPA exception register TRA R/W Undefined 0xFF00 0020 0x1F00 0020 32

Exception event register EXPEVT R/W 0x0000 0000/

0x0000 0020A
0xFF00 0024 0x1F00 0024 32

Interrupt event register INTEVT R/W Undefined 0xFF00 0028 0x1F00 0028 32

Table 29: Exception-related registers

a. 0x0000 0000 is set in a power-on reset, and 0x0000 0020 in a manual reset.

b. This is the address when using the virtual/physical address space P4 area. When
making an access from physical address space area 7 using the TLB, the upper 3 bits
of the address are ignored.

110 Register descriptions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

5.2.1 Exception event register (EXPEVT)

The exception event register (EXPEVT) resides at P4 address 0xFF00 0024, and
contains a 12-bit exception code. The exception code set in EXPEVT is that for a
reset or general exception event. The exception code is set automatically by
hardware when an exception occurs. EXPEVT can also be modified by software.

5.2.2 Interrupt event register (INTEVT)

The interrupt event register (INTEVT) resides at P4 address 0xFF00 0028, and
contains a 12-bit exception code. The exception code set in INTEVT is that for an
interrupt request. The exception code is set automatically by hardware when an
exception occurs. INTEVT can also be modified by software.

EXPEVT

Field Bits Size Synopsis Type

Exception
code

[0,11] 12 Exception code RW

Operation Exception code set automatically by hardware when exception
occurs.

Power-on reset Undefined

RES [12,31] 20 Bits reserved RW

Power-on reset Undefined

Table 30: EXPEVT Register Description

INTEVT

Field Bits Size Synopsis Type

Exception
code

[0,11] 12 Exception code RW

Operation Exception code set automatically by hardware when exception
occurs.

Power-on reset Undefined

Table 31: INTEVT Register Description

Register descriptions 111
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

5.2.3 TRAPA exception register (TRA)

The TRAPA exception register (TRA) resides at P4 address 0xFF00 0020. TRA is set
automatically by hardware when a TRAPA instruction is executed. TRA can also be
modified by software.

RES [12,31] 20 Bits reserved RW

Power-on reset Undefined

INTEVT

Field Bits Size Synopsis Type

Table 31: INTEVT Register Description

TRA

Field Bits Size Synopsis Type

Imm [2,9] 8 8-bit immediate data for the TRAPA instruction. RW

Operation

Power-on reset Undefined

RES [0,1],
[10,31]

24 Bits reserved RW

Power-on reset Undefined

Table 32: TRA

112 Exception handling functions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

5.3 Exception handling functions

5.3.1 Exception handling flow

In exception handling, the contents of the program counter (PC), status register
(SR) and R15 are saved in the saved program counter (SPC), saved status register
(SSR) and saved general register 15 ((SGR). The CPU starts execution of the
appropriate exception handling routine according to the vector address. An
exception handling routine is a program the user writes to handle a specific
exception. The exception handling routine is terminated and control returned to the
original program, by executing a return-from-exception instruction (RTE). This
instruction restores the PC and SR contents, and returns control to the normal
processing routine at the point at which the exception occurred. The SGR contents
are not written back to R15 by an RTE instruction.

The basic processing flow is as follows. See section 2, Data Formats and Registers,
for the meaning of the individual SR bits.

1 The PC, SR and R15 contents are saved in SPC, SSR and SGR.

2 The block bit (BL) in SR is set to 1.

3 The mode bit (MD) in SR is set to 1.

4 The register bank bit (RB) in SR is set to 1.

5 In a reset, the FPU disable bit (FD) in SR is cleared to 0.

6 The exception code is written to bits 11 to 0 of the exception event register
(EXPEVT), or to bits 13 to 0 of the interrupt event register (INTEVT).

7 The CPU branches to the determined exception handling vector address, and the
exception handling routine begins.

5.3.2 Exception handling vector addresses

The reset vector address is fixed at 0xA000 0000. Exception and interrupt vector
addresses are determined by adding the offset for the specific event, to the vector
base address, which is set by software in the vector base register (VBR). In the case
of the TLB miss exception, for example, the offset is 0x0000 0400, so if 0x9C08 0000
is set in VBR, the exception handling vector address will be 0x9C08 0400. If a
further exception occurs at the exception handling vector address, a duplicate
exception will result, and recovery will be difficult; therefore, fixed physical
addresses (P1, P2) should be specified for vector addresses.

Exception types and priorities 113
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

5.4 Exception types and priorities
Table 33 shows the types of exceptions, with their relative priorities, vector
addresses, and exception/interrupt codes.

Exception
category

Execution
mode

Exception
Priority

level
Priority
order

Vector
address

Offset
Exception

code

Reset Abort type POWERON 1 1 0xA000 0000 - 0x000

MANRESET 1 2 0xA000 0000 - 0x020

HUDIRESET 1 1 0xA000 0000 - 0x000

ITLBMULTIHIT 1 3 0xA000 0000 - 0x140

OTLBMULTIHIT 1 4 0xA000 0000 - 0x140

General
exception

Re-
execution
type

UBRKBEFORE*1 2 0 (VBR/DBR) 0x100/- 0x1E0

IADDERR 2 1 (VBR) 0x100 0x0E0

ITLBMISS 2 2 (VBR) 0x400 0x040

EXECPROT 2 3 (VBR) 0x100 0x0A0

RESINST 2 4 (VBR) 0x100 0x180

ILLSLOT 2 4 (VBR) 0x100 0x1A0

FPUDIS 2 4 (VBR) 0x100 0x800

SLOTFPUDIS 2 4 (VBR) 0x100 0x820

RADDERR 2 5 (VBR) 0x100 0x0E0

WADDERR 2 5 (VBR) 0x100 0x100

RTLBMISS 2 6 (VBR) 0x400 0x040

WTLBMISS 2 6 (VBR) 0x400 0x060

READPROT 2 7 (VBR) 0x100 0x0A0

WRITEPROT 2 7 (VBR) 0x100 0x0C0

FPUEXC 2 8 (VBR) 0x100 0x120

FIRSTWRITE 2 9 (VBR) 0x100 0x080

Table 33: Exceptions

114 Exception flow
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Priority: Priority is first assigned by priority level, then by priority order within
each level (the lowest number represents the highest priority).

Exception transition destination: Control passes to 0xA000 0000 in a reset, and
to [VBR + offset] in other cases.

Exception code: Stored in EXPEVT for a reset or general exception, and in
INTEVT for an interrupt.

IRL: Interrupt request level (pins IRL3ñIRL0).

Module/source: See the sections on the relevant peripheral modules.

Note: When BRCR.UBDE = 1, PC = DBR. In other cases, PC = VBR + 0x100.

5.5 Exception flow

5.5.1 Exception flow

Figure 30 shows an outline flowchart of the basic operations in instruction execution
and exception handling. For the sake of clarity, the following description assumes
that instructions are executed sequentially, one by one. Register settings in the

Completion
type

TRAP 2 4 (VBR) 0x100 0x160

UBRKAFTER*A 2 10 (VBR/DBR) 0x100/- 0x1E0

Interrupt Completion
type

NMIb 3 - (VBR) 0x600 0x1C0

IRLINTb 4 a (VBR) 0x600 See the
system

manualbPERIPHINTb 4 A (VBR) 0x600

a. The priority order of external interrupts and peripheral module interrupts can be set by
software.

b. The set of peripheral interrupts is system-dependent. See the Interrupt chapter in the
System Architecture Manual for the list of peripheral interrupts and their corresponding
INTEVT codes.

Exception
category

Execution
mode

Exception
Priority

level
Priority
order

Vector
address

Offset
Exception

code

Table 33: Exceptions

Exception flow 115
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

event of an exception are shown only for SSR, SPC, EXPEVT/INTEVT, SR, and PC,
but other registers may be set automatically by hardware, depending on the
exception. For details, see section 5.6, Description of Exceptions. Also, see
Section 5.6.4, for exception handling during execution of a delayed branch
instruction and a delay slot instruction, and in the case of instructions in which two
data accesses are performed.

Figure 30: Instruction execution and exception handling

Execute next instruction

Is highest-
priority exception

re-exception
type?

Cancel instruction execution
result

Yes

Yes

Yes

No

No

No

No

Yes

SSR ← SR
SPC ← PC
SGR ← R15
EXPEVT/INTEVT ← exception code
SR.{MD,RB,BL} ← 111
PC ← (BRCR.UBDE=1 && User_Break?

DBR: (VBR + Offset))

EXPEVT ← exception code
SR. {MD, RB, BL, FD, IMASK} ← 11101111
PC ← H'A000 0000

Interrupt
requested?

General
exception requested?

Reset
requested?

116 Exception flow
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

5.5.2 Exception source acceptance

A priority ranking is provided for all exceptions, for use in determining which of two
or more simultaneously generated exceptions should be accepted. Five of the
general exceptions:

• general illegal instruction exception

• slot illegal instruction exception

• general FPU disable exception

• slot FPU disable exception

• unconditional trap exception

are detected in the process of instruction decoding, and do not occur simultaneously
in the instruction pipeline. Therefore, these exceptions all have the same priority.
General exceptions are detected in the order of instruction execution. However,
exception handling is performed in the order of instruction flow (program order).
Thus, an exception for an earlier instruction is accepted before that for a later
instruction. An example of the order of acceptance for general exceptions is shown in
Figure 31.

Exception flow 117
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Figure 31: Example of general exception acceptance order

IF

IF

ID

ID

EX

EX

MA

MA

WB

WB

TLB miss (data access)Pipeline flow:

Order of detection:

Instruction n
Instruction n+1

General illegal instruction exception (instruction n+1) and
TLB miss (instruction n+2) are detected simultaneously

Order of exception handling:

TLB miss (instruction n)

Program order

1

Instruction n+2

General illegal instruction exception

IF ID EX MA WB

IF ID EX MA WB

TLB miss (instruction access)

2

3

4

IF: Instruction fetch
ID: Instruction decode
EX: Instruction execution
MA: Memory access
WB: Write-back

Instruction n+3

TLB miss (instruction n)

Re-execution of instruction n

General illegal instruction exception
(instruction n+1)

Re-execution of instruction n+1

TLB miss (instruction n+2)

Re-execution of instruction n+2

Execution of instruction n+3

118 Exception flow
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

5.5.3 Exception requests and BL bit

When the BL bit in SR is 0, exceptions and interrupts are accepted.

When the BL bit in SR is 1 and an exception other than a user break is generated,
the CPUs internal registers are set to their post-reset state, the registers of the
other modules retain their contents prior to the exception, and the CPU branches to
the same address as in a reset (0xA000 0000). For the operation in the event of a
user break, see section 20: User Break Controller. If an ordinary interrupt occurs,
the interrupt request is held pending, and is accepted after the BL bit has been
cleared to 0 by software. If a nonmaskable interrupt (NMI) occurs, it can be held
pending or accepted, according to the setting made by software.

Thus, normally, SPC and SSR are saved and then the BL bit in SR is cleared to 0, to
enable multiple exception state acceptance.

5.5.4 Return from exception handling

The RTE instruction is used to return from exception handling. When the RTE
instruction is executed, the SPC contents are restored to PC, and the SSR contents
to SR. The CPU returns from the exception handling routine by branching to the
SPC address. If SPC and SSR were saved to external memory, set the BL bit in SR
to 1 before restoring the SPC and SSR contents and issuing the RTE instruction.

Description of exceptions 119
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

5.6 Description of exceptions
The various exception handling operations are described here, covering exception
sources, transition addresses, and processor operation, when a transition is made.

5.6.1 Resets

1 POWERON - Power-On Reset

- Sources:
For details of how the core is driven to the power on reset state, refer to the
System Architecture Manual of the appropriate product.

- Transition address: 0xA000 0000

- Transition operations:
Exception code 0x000 is set in EXPEVT, initialization of VBR and SR is
performed, and a branch is made to PC = 0xA000 0000. In the initialization
processing, the VBR register is set to 0x0000 0000, and in SR, the MD, RB,
and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits
(I3-I0) are set to 0xF.

CPU initialization is performed. For details of the impact on the rest of the
system refer to the System Architecture Manual.

Refer to Appendix A for power-on reset values for the various CPU core
modules set by the Initialize_Module function.

POWERON()
{

Initialize_Module(PowerOn);
EXPEVT = 0x00000000;
VBR = 0x00000000;
SR.MD = 1;
SR.RB = 1;
SR.BL = 1;
SR.(I0-I3) = 0xF;
SR.FD=0;
PC = 0xA0000000;

}

MANRESET - Manual Reset

120 Description of exceptions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

- Sources:
When a general exception other than a user break occurs while the BL bit is
set to 1 in SR. It is also possible for the system in which the core is integrated
to drive the processor in to this reset state. For details refer to the System
Architecture Manual of the appropriate product.

- Transition address: 0xA000 0000

- Transition operations:

Exception code 0x020 is set in EXPEVT, initialization of VBR and SR is
performed, and a branch is made to PC = 0xA000 0000. In the initialization
processing, the VBR register is set to 0x0000 0000, and in SR, the MD, RB,
and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits
(I3-I0) are set to 0xF. CPU and system initialization are performed. For
details refer to the System Architecture Manual.

Refer to Appendix A for the manual reset values for the various CPU core
modules set by the Initialize_Module function.

MANRESET()
{

Initialize_Module(Manual);
EXPEVT = 0x00000020;
VBR = 0x00000000;
SR.MD = 1;
SR.RB = 1;
SR.BL = 1;
SR.(I0-I3) = 0xF;
SR.FD = 0;
PC = 0xA0000000;

}

Description of exceptions 121
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

2 HUDIRESET - H-UDI Reset

- Source:
Refer to the System Architecture Manual for a description of how the core is
placed in the H-UDI reset state.

- Transition address: 0xA000 0000

Transition operations:

Exception code 0x000 is set in EXPEVT, initialization of VBR and SR is
performed, and a branch is made to PC = 0xA000 0000. In the initialization
processing, the VBR register is set to 0x0000 0000, and in SR, the MD, RB,
and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits
(I3-I0) are set to 0xF. CPU and system initialization are performed, for details
refer to the System Architecture Manual.

Refer to Appendix A for the manual reset values for the various CPU core
modules set by the Initialize_Module function.

HUIDRESET()
{

Initialize_Module(PowerOn);
EXPEVT = 0x00000000;
VBR = 0x00000000;
SR.MD = 1;
SR.RB = 1;
SR.BL = 1;
SR.(I0-I3) = 0xF;
SR.FD = 0;
PC = 0xA0000000;

}

122 Description of exceptions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

3 ITLBMULTIHIT - Instruction TLB Multiple-Hit Exception

- Source: Multiple ITLB address matches

- Transition address: 0xA000 0000

- Transition operations:
The virtual address (32 bits) at which this exception occurred is set in TEA,
and the corresponding virtual page number (22 bits) is set in PTEH [31:10].
ASID in PTEH indicates the ASID when this exception occurred.

Exception code 0x140 is set in EXPEVT, initialization of VBR and SR is
performed, and a branch is made to PC = 0xA000 0000.

In the initialization processing, the VBR register is set to 0x0000 0000, and in
SR, the MD, RB, and BL bits are set to 1, the FD bit is cleared to 0, and the
interrupt mask bits (I3-I0) are set to 0xF.

CPU and system initialization are performed in the same way as in a manual
reset.

Refer to Appendix A for the manual reset values for the various CPU core
modules set by the Initialize_Module function.

ITLBMULTIHIT()
{

Initialize_Module(Manual);
TEA = EXCEPTION_ADDRESS;
PTEH.VPN = PAGE_NUMBER;
EXPEVT = 0x00000140;
VBR = 0x00000000;
SR.MD = 1;
SR.RB = 1;
SR.BL = 1;
SR.(I0-I3) = 0xF;
SR.FD = 0;
PC = 0xA0000000;

}

Description of exceptions 123
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

4 OTLBMULTIHIT - Operand TLB Multiple-Hit Exception

- Source: Multiple UTLB address matches

- Transition address: 0xA000 0000

Transition operations:
The virtual address (32 bits) at which this exception occurred is set in TEA,
and the corresponding virtual page number (22 bits) is set in PTEH [31:10].
ASID in PTEH indicates the ASID when this exception occurred.

Exception code 0x140 is set in EXPEVT, initialization of VBR and SR is
performed, and a branch is made to PC = 0xA000 0000.

In the initialization processing, the VBR register is set to 0x0000 0000, and in
SR, the MD, RB, and BL bits are set to 1, the FD bit is cleared to 0, and the
interrupt mask bits (I3-I0) are set to 0xF.

CPU and system initialization are performed in the same way as in a manual
reset.

Refer to Appendix A for the manual reset values for the various CPU core
modules set by the Initialize_Module function.

OTLBMULTIHIT()
{

Initialize_Module(Manual);
TEA = EXCEPTION_ADDRESS;
PTEH.VPN = PAGE_NUMBER;
EXPEVT = 0x00000140;
VBR = 0x00000000;
SR.MD = 1;
SR.RB = 1;
SR.BL = 1;
SR.(I0-I3) = 0xF;
SR.FD = 0;
PC = 0xA0000000;

}

124 Description of exceptions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

5.6.2 General exceptions

1 RTLBMISS - Read Data TLB Miss Exception

- Source: Address mismatch in UTLB address comparison

- Transition address: VBR + 0x0000 0400

- Transition operations:
The virtual address (32 bits) at which this exception occurred is set in TEA,
and the corresponding virtual page number (22 bits) is set in PTEH [31:10].
ASID in PTEH indicates the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred
are saved in SPC and SSR. The R15 contents are saved in SGR.

Exception code 0x040 is set in EXPEVT. The BL, MD, and RB bits are set to 1
in SR, and a branch is made to PC = VBR + 0x0400.

To speed up TLB miss processing, the offset is separate from that of other
exceptions.

RTLBMISS()
{

TEA = EXCEPTION_ADDRESS;
PTEH.VPN = PAGE_NUMBER;
SPC = PC;
SSR = SR;
SGR = R15;
EXPEVT = 0x00000040;
SR.MD = 1;
SR.RB = 1;
SR.BL = 1;
PC = VBR + 0x00000400;

}

Description of exceptions 125
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

2 WTLBMISS - Write Data TLB Miss Exception

- Source: Address mismatch in UTLB address comparison

- Transition address: VBR + 0x0000 0400

- Transition operations:
The virtual address (32 bits) at which this exception occurred is set in TEA,
and the corresponding virtual page number (22 bits) is set in PTEH [31:10].
ASID in PTEH indicates the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred
are saved in SPC and SSR. The R15 contents at this time are saved in SGR.

Exception code 0x060 is set in EXPEVT. The BL, MD, and RB bits are set to 1
in SR, and a branch is made to PC = VBR + 0x0400.

To speed up TLB miss processing, the offset is separate from that of other
exceptions.

WTLBMISS()
{

TEA = EXCEPTION_ADDRESS;
PTEH.VPN = PAGE_NUMBER;
SPC = PC;
SSR = SR;
SGR = R15;
EXPEVT = 0x00000060;
SR.MD = 1;
SR.RB = 1;
SR.BL = 1;
PC = VBR + 0x00000400;

}

126 Description of exceptions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

3 ITLBMISS - Instruction TLB Miss Exception

- Source: Address mismatch in ITLB address comparison

- Transition address: VBR + 0x0000 0400

- Transition operations:
The virtual address (32 bits) at which this exception occurred is set in TEA,
and the corresponding virtual page number (22 bits) is set in PTEH [31:10].
ASID in PTEH indicates the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred
are saved in SPC and SSR. The R15 contents at this time are saved in SGR.

Exception code 0x040 is set in EXPEVT. The BL, MD, and RB bits are set to 1
in SR, and a branch is made to PC = VBR + 0x0400.

To speed up TLB miss processing, the offset is separate from that of other
exceptions.

ITLBMISS()
{

TEA = EXCEPTION_ADDRESS;
PTEH.VPN = PAGE_NUMBER;
SPC = PC;
SSR = SR;
SGR = R15;
EXPEVT = 0x00000040;
SR.MD = 1;
SR.RB = 1;
SR.BL = 1;
PC = VBR + 0x00000400;

}

Description of exceptions 127
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

4 FIRSTWRITE - Initial Page Write Exception

- Source: TLB is hit in a store access, but dirty bit D = 0

- Transition address: VBR + 0x0000 0100

- Transition operations:
The virtual address (32 bits) at which this exception occurred is set in TEA,
and the corresponding virtual page number (22 bits) is set in PTEH [31:10].
ASID in PTEH indicates the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred
are saved in SPC and SSR. The R15 contents at this time are saved in SGR.

Exception code 0x080 is set in EXPEVT. The BL, MD, and RB bits are set to 1
in SR, and a branch is made to PC = VBR + 0x0100.

FIRSTWRITE()
{

TEA = EXCEPTION_ADDRESS;
PTEH.VPN = PAGE_NUMBER;
SPC = PC;
SSR = SR;
SGR = R15;
EXPEVT = 0x00000080;
SR.MD = 1; SR.RB = 1;
SR.BL = 1;
PC = VBR + 0x00000100;

}

128 Description of exceptions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

5 READPROT - Data TLB Protection Violation Exception

- Source: The access does not accord with the UTLB protection information (PR
bits) shown below.

- Transition address: VBR + 0x0000 0100

- Transition operations:
The virtual address (32 bits) at which this exception occurred is set in TEA,
and the corresponding virtual page number (22 bits) is set in PTEH [31:10].
ASID in PTEH indicates the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred
are saved in SPC and SSR. The R15 contents at this time are saved in SGR.

Exception code 0x0A0 is set in EXPEVT. The BL, MD, and RB bits are set to 1
in SR, and a branch is made to PC = VBR + 0x0100.

READPROT()
{

TEA = EXCEPTION_ADDRESS;
PTEH.VPN = PAGE_NUMBER;
SPC = PC;
SSR = SR;
SGR = R15;
EXPEVT = 0x000000A0;
SR.MD = 1;
SR.RB = 1;
SR.BL = 1;
PC = VBR + 0x00000100;

}

PR Privileged mode User mode

00 Only read access possible Access not possible

01 Read/write access possible Access not possible

10 Only read access possible Only read access possible

11 Read/write access possible Read/write access possible

Description of exceptions 129
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

6 WRITEPROT - Write Data TLB Protection Violation Exception

- Source: The access does not accord with the UTLB protection information (PR
bits) shown below.

- Transition address: VBR + 0x0000 0100

- Transition operations:
The virtual address (32 bits) at which this exception occurred is set in TEA,
and the corresponding virtual page number (22 bits) is set in PTEH [31:10].
ASID in PTEH indicates the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred
are saved in SPC and SSR. The R15 contents at this time are saved in SGR.

Exception code 0x0C0 is set in EXPEVT. The BL, MD, and RB bits are set to 1
in SR, and a branch is made to PC = VBR + 0x0100.

WRITEPROT()
{

TEA = EXCEPTION_ADDRESS;
PTEH.VPN = PAGE_NUMBER;
SPC = PC;
SSR = SR;
SGR = R15;
EXPEVT = 0x000000C0;
SR.MD = 1;
SR.RB = 1;
SR.BL = 1;
PC = VBR + 0x00000100;

}

PR Privileged mode User mode

00 Only read access possible Access not possible

01 Read/write access possible Access not possible

10 Only read access possible Only read access possible

11 Read/write access possible Read/write access possible

130 Description of exceptions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

7 EXECPROT - Instruction TLB Protection Violation Exception

- Source: The access does not accord with the ITLB protection information (PR
bits) shown below.

- Transition address: VBR + 0x0000 0100

- Transition operations: The virtual address (32 bits) at which this exception
occurred is set in TEA, and the corresponding virtual page number (22 bits) is
set in PTEH [31:10]. ASID in PTEH indicates the ASID when this exception
occurred.

The PC and SR contents for the instruction at which this exception occurred
are saved in SPC and SSR. The R15 contents at this time are saved in SGR.

Exception code 0x0A0 is set in EXPEVT. The BL, MD, and RB bits are set to 1
in SR, and a branch is made to PC = VBR + 0x0100.

EXECPROT()
{

TEA = EXCEPTION_ADDRESS;
PTEH.VPN = PAGE_NUMBER;
SPC = PC;
SSR = SR;
SGR = R15;
EXPEVT = 0x000000A0;
SR.MD = 1;
SR.RB = 1;
SR.BL = 1;
PC = VBR + 0x00000100;

}

PR Privileged mode User mode

0 Access possible Access not possible

1 Access possible Access possible

Description of exceptions 131
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

8 RADDERR - Read Data Address Error

- Sources:

Word data access from other than a word boundary (2n +1)

Longword data access from other than a longword data boundary (4n +1, 4n +
2, or 4n +3)

Quadword data access from other than a quadword data boundary (8n +1, 8n
+ 2, 8n +3, 8n + 4, 8n + 5, 8n + 6, or 8n + 7)

Access to area 0x8000 00000xFFFF FFFF in user mode

- Transition address: VBR + 0x0000 0100

- Transition operations:
The virtual address (32 bits) at which this exception occurred is set in TEA,
and the corresponding virtual page number (22 bits) is set in PTEH [31:10].
ASID in PTEH indicates the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred
are saved in SPC and SSR. The R15 contents at this time are saved in SGR.

Exception code 0x0E0 is set in EXPEVT. The BL, MD, and RB bits are set to 1
in SR, and a branch is made to PC = VBR + 0x0100. For details, see
Chapter 3: Memory management unit (MMU) on page 45.

RADDERR()
{

TEA = EXCEPTION_ADDRESS;
PTEN.VPN = PAGE_NUMBER;
SPC = PC;
SSR = SR;
SGR = R15;
EXPEVT = 0x000000E0;
SR.MD = 1;
SR.RB = 1;
SR.BL = 1;
PC = VBR + 0x00000100;

}

132 Description of exceptions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

9 WADDERR - Write Data Address Error

- Sources:

Word data access from other than a word boundary (2n +1)

Longword data access from other than a longword data boundary (4n +1, 4n +
2, or 4n +3)

Quadword data access from other than a quadword data boundary (8n +1, 8n
+ 2, 8n +3, 8n + 4, 8n + 5, 8n + 6, or 8n + 7)

Access to area 0x8000 00000 - 0xFFFF FFFF in user mode

- Transition address: VBR + 0x0000 0100

- Transition operations:
The virtual address (32 bits) at which this exception occurred is set in TEA,
and the corresponding virtual page number (22 bits) is set in PTEH [31:10].
ASID in PTEH indicates the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred
are saved in SPC and SSR. The R15 contents at this time are saved in SGR.

Exception code 0x100 is set in EXPEVT. The BL, MD, and RB bits are set to 1
in SR, and a branch is made to PC = VBR + 0x0100. For details, see
Chapter 3: Memory management unit (MMU) on page 45.

WADDERR(
{

TEA = EXCEPTION_ADDRESS;
PTEN.VPN = PAGE_NUMBER;
SPC = PC;
SSR = SR;
SGR = R15;
EXPEVT = 0x00000100;
SR.MD = 1;
SR.RB = 1;
SR.BL = 1;
PC = VBR + 0x00000100;

}

Description of exceptions 133
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

10 IADDERR - Instruction Address Error

- Sources:

Instruction fetch from other than a word boundary (2n +1)

Instruction fetch from area 0x8000 00000 - 0xFFFF FFFF in user mode

- Transition address: VBR + 0x0000 0100

- Transition operations:
The virtual address (32 bits) at which this exception occurred is set in TEA,
and the corresponding virtual page number (22 bits) is set in PTEH [31:10].
ASID in PTEH indicates the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred
are saved in the SPC and SSR. The R15 contents at this time are saved in
SGR.

Exception code 0x0E0 is set in EXPEVT. The BL, MD, and RB bits are set to 1
in SR, and a branch is made to PC = VBR + 0x0100. For details, see
Chapter 3: Memory management unit (MMU) on page 45.

IADDERR()
{

TEA = EXCEPTION_ADDRESS;
PTEN.VPN = PAGE_NUMBER;
SPC = PC;
SSR = SR;
SGR = R15;
EXPEVT = 0x000000E0;
SR.MD = 1;
SR.RB = 1;
SR.BL = 1;
PC = VBR + 0x00000100;

}

134 Description of exceptions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

11 TRAP - Unconditional trap

- Source: Execution of TRAPA instruction

- Transition address: VBR + 0x0000 0100

- Transition operations:
As this is a processing-completion-type exception, the PC contents for the
instruction following the TRAPA instruction are saved in SPC. The value of
SR and R15 when the TRAPA instruction is executed are saved in SSR and
SGR. The 8-bit immediate value in the TRAPA instruction is multiplied by 4,
and the result is set in TRA [9]. Exception code 0x160 is set in EXPEVT. The
BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC = VBR +
0x0100.

TRAP()
{

SPC = PC + 2;
SSR = SR;
SGR = R15;
TRA = imm << 2; EXPEVT = 0x00000160;
SR.MD = 1;
SR.RB = 1;
SR.BL = 1;
PC = VBR + 0x00000100;

}

Description of exceptions 135
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

12 RESINST - General Illegal Instruction Exception

- Sources:

Decoding of an undefined instruction other than in a branch delay slot.

The opcode 0xFFFD is guaranteed to be defined in any SH-4 architecture
revision. Other unused opcodes may be treated as reserved in any particular
SH-4 implementation.

Decoding in user mode of a privileged instruction not in a delay slot

Privileged instructions: LDC, STC, RTE, LDTLB, SLEEP, but excluding LDC/
STC instructions that access GBR

- Transition address: VBR + 0x0000 0100

- Transition operations:
The PC contents for the instruction at which this exception occurred are
saved in SPC. The SR and R15 contents when this exception occurred are
saved in SSR and SGR.

Exception code 0x180 is set in EXPEVT. The BL, MD, and RB bits are set to 1
in SR, and a branch is made to PC = VBR + 0x0100.

Note: The only undefined opcode which the architecture guarantees to cause a General
Illegal Instruction Exception is 0xFFFD.

RESINST()
{

SPC = PC;
SSR = SR;
SGR = R15;
EXPEVT = 0x00000180;
SR.MD = 1;
SR.RB = 1;
SR.BL = 1;
PC = VBR + 0x00000100;

}

136 Description of exceptions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

13 ILLSLOT - Slot Illegal Instruction Exception

- Sources:

Decoding of an undefined instruction in a delay slot

The branches with delay slots are JMP, JSR, BRA, BRAF, BSR, BSRF, RTS,
RTE, BT/S and BF/S. The opcode 0xFFFD is guaranteed to be undefined in
any SH-4 architecture revision. Other unused opcodes may be treated as
reserved in any particular SH-4 implementation.

Decoding of an instruction that modifies PC in a delay slot

Instructions that modify PC: JMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE,
BT, BF, BT/S, BF/S, TRAPA, LDC Rm, SR, LDC.L @Rm+, SR

Decoding in user mode of a privileged instruction in a delay slot

Privileged instructions: LDC, STC, RTE, LDTLB, SLEEP, but excluding LDC/
STC instructions that access GBR

Decoding of a PC-relative MOV instruction or MOVA instruction in a delay
slot ·

Transition address: VBR + 0x0000 0100

Transition operations:
The PC contents for the preceding delayed branch instruction are saved in
SPC. The SR contents when this exception occurred are saved in SSR. The
R15 contents at this time are saved in SGR.

Exception code 0x1A0 is set in EXPEVT. The BL, MD, and RB bits are set to 1
in SR, and a branch is made to PC = VBR + 0x0100.

Note: The only undefined opcode which the architecture guarantees to cause a Slot Illegal
Instruction Exception is 0xFFFD.

ILLSLOT()
{

SPC = PC - 2;
SSR = SR;
SGR = R15;
EXPEVT = 0x000001A0;
SR.MD = 1;
SR.RB = 1;
SR.BL = 1;
PC = VBR + 0x00000100;

}

Description of exceptions 137
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

14 FPUDIS - General FPU Disable Exception

- Source: Decoding of an FPU instruction* not in a delay slot with SR.FD =1

- Transition address: VBR + 0x0000 0100

Transition operations:
The PC and SR contents for the instruction at which this exception occurred
are saved in SPC and SSR. The R15 contents at this time are saved in SGR.

Exception code 0x800 is set in EXPEVT. The BL, MD, and RB bits are set to 1
in SR, and a branch is made to PC = VBR + 0x0100.

Note: FPU instructions are instructions in which the first 4 bits of the instruction code are
F (but excluding undefined instruction 0xFFFD), and the LDS, STS, LDS.L, and
STS.L instructions corresponding to FPUL and FPSCR.

FPUDIS()
{

SPC = PC;
SSR = SR;
SGR = R15;
EXPEVT = 0x00000800;
SR.MD = 1;
SR.RB = 1;
SR.BL = 1;
PC = VBR + 0x00000100;

}

138 Description of exceptions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

15 SLOTFPUDIS - Slot FPU Disable Exception

- Source: Decoding of an FPU instruction in a delay slot with SR.FD =1

- Transition address: VBR + 0x0000 0100

- Transition operations:
The PC contents for the preceding delayed branch instruction are saved in
SPC. The SR and R15 contents when this exception occurred are saved in
SSR and SGR.

Exception code 0x820 is set in EXPEVT. The BL, MD, and RB bits are set to 1
in SR, and a branch is made to PC = VBR + 0x0100.

SLOTFPUDIS()
{

SPC = PC - 2;
SSR = SR;
SGR = R15;
EXPEVT = 0x00000820;
SR.MD = 1;
SR.RB = 1;
SR.BL = 1;
PC = VBR + 0x00000100;

}

Description of exceptions 139
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

16 UBRKBEFORE - User Breakpoint Pre-execution Trap

- Source: Fulfilling of a break condition set in the user break controller

- Transition address: VBR + 0x0000 0100, or DBR

- Transition operations:

The PC contents for the instruction at which the breakpoint is set are set in
SPC. The SR and R15 contents when the break occurred are saved in SSR
and SGR. Exception code 0x1E0 is set in EXPEVT.

The BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC =
VBR + 0x0100. It is also possible to branch to PC = DBR. For details of PC,
etc., when a data break is set, see User Break Controller (UBC) Chapter in the
ST40 System Architecture Manual.

UBRKBEFORE()
{

SPC = PC;
SSR = SR;
SGR = R15;
EXPEVT = 0x000001E0;
SR.MD = 1;
SR.RB = 1;
SR.BL = 1;
PC = (BRCR.UBDE==1 ? DBR : VBR + H00000100);

}

140 Description of exceptions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

17 UBRKAFTER - User Breakpoint Post-Execution Trap

- Source: Fulfilling of a break condition set in the user break controller

- Transition address: VBR + 0x0000 0100, or DBR

- Transition operations:

The PC of the instruction following that at which the breakpoint is set is
placed in SPC. The SR and R15 contents when the break occurred are saved
in SSR and SGR. Exception code 0x1E0 is set in EXPEVT.

The BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC =
VBR + 0x0100. It is also possible to branch to PC = DBR. For details of PC,
etc., when a data break is set, see User Break Controller (UBC) Chapter in the
ST40 System Architecture Manual.

UBRKAFTER()
{

SPC = PC + 2;
SSR = SR;
SGR = R15;
EXPEVT = 0x000001E0;
SR.MD = 1;
SR.RB = 1;
SR.BL = 1;
PC = (BRCR.UBDE==1 ? DBR : VBR + H00000100);

}

Description of exceptions 141
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

18 FPUEXC - FPU Exception

- Source: Exception due to execution of a floating-point operation

- Transition address: VBR + 0x0000 0100

- Transition operations:

The PC and SR contents for the instruction at which this exception occurred
are saved in SPC and SSR. Exception code 0x120 is set in EXPEVT. The BL,
MD, and RB bits are set to 1 in SR, and a branch is made to PC = VBR +
0x0100.

FPUEXC()
{

SPC = PC;
SSR = SR;
SGR = R15;
EXPEVT = 0x00000120;
SR.MD = 1;
SR.RB = 1;
SR.BL = 1;
PC = VBR + 0x00000100;

}

142 Description of exceptions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

5.6.3 Interrupts

1 NMI - Non-Maskable Interrupt

- Source: Refer to relevant System Architecture Manual for details of
non-maskable interrupt generation (NMI).

- Transition address: VBR + 0x0000 0600

Transition operations:

The PC and SR contents for the instruction at which this exception is
accepted are saved in SPC and SSR. The R15 contents at this time are saved
in SGR.

Exception code 0x1C0 is set in INTEVT. The BL, MD, and RB bits are set to 1
in SR, and a branch is made to PC = VBR + 0x0600.

When the BL bit in SR is 0, this interrupt is not masked by the interrupt
mask bits in SR, and is accepted at the highest priority level. When the BL bit
in SR is 1, a software setting can specify whether this interrupt is to be
masked or accepted. For details refer to the description of interrupt
programming in the appropriate System Architecture Manual.

NMI()
{

SPC = PC;
SSR = SR;
SGR = R15;
INTEVT = 0x000001C0;
SR.MD = 1;
SR.RB = 1;
SR.BL = 1;
PC = VBR + 0x00000600;

}

Description of exceptions 143
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

2 IRLINT - IRL Interrupts

- Source: The interrupt mask bit setting in SR is smaller than the IRL (30)
level, and the BL bit in SR is 0 (accepted at instruction boundary).

- Transition address: VBR + 0x0000 0600

- Transition operations:

The PC contents immediately after the instruction at which the interrupt is
accepted are set in SPC. The SR cand R15 contents at the time of acceptance
are set in SSR and SGR.

The code corresponding to the IRL (30) level is set in INTEVT. For futher
details of the interrupt handling behavior, refer to the product level
documentation of the interrupt controller. The BL, MD, and RB bits are set to
1 in SR, and a branch is made to VBR + 0x0600. The acceptance level is not
set in the interrupt mask bits in SR. When the BL bit in SR is 1, the interrupt
is masked. For futher details of the interrupt handling behavior, refer to the
product level documentation of the interrupt controller.

IRLINT()
{

SPC = PC;
SSR = SR;
SGR = R15;
INTEVT = 0x00000200 ~ 0x000003C0;
SR.MD = 1;
SR.RB = 1;
SR.BL = 1;
PC = VBR + 0x00000600;

}

144 Description of exceptions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

3 PERIPHINT - Peripheral Module Interrupts

- Source: The interrupt mask bit setting in SR is smaller than the peripheral
module (Hitachi-UDI, etc.) interrupt level, and the BL bit in SR is 0 (accepted
at instruction boundary).

- Transition address: VBR + 0x0000 0600

- Transition operations:
The PC contents immediately after the instruction at which the interrupt is
accepted are set in SPC. The SR and R15 contents at the time of acceptance
are set in SSR and SGR.

The code corresponding to the interrupt source is set in INTEVT. The BL,
MD, and RB bits are set to 1 in SR, and a branch is made to VBR + 0x0600.
The module interrupt levels should be set as values between B’0000 and
B’1111 in the interrupt priority registers (IPRAIPRC) in the interrupt
controller. For futher details of the interrupt handling behavior, refer to the
product level documentation of the interrupt controller.

Module_interruption()
{

SPC = PC;
SSR = SR;
SGR = R15;
INTEVT = 0x00000400 ~ 0x00000B80;
SR.MD = 1;
SR.RB = 1;
SR.BL = 1;
PC = VBR + 0x00000600;

}

Description of exceptions 145
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

5.6.4 Priority order with multiple exceptions

With some instructions, such as instructions that make two accesses to memory,
and the indivisible pair comprising a delayed branch instruction and delay slot
instruction, multiple exceptions occur. Care is required in these cases, as the
exception priority order differs from the normal order.

1 Instructions that make two accesses to memory.
With MAC instructions, memory-to-memory arithmetic/logic instructions, and
TAS instructions, two data transfers are performed by a single instruction, and
an exception will be detected for each of these data transfers. In these cases,
therefore, the following order is used to determine priority.

1.1 Data address error in first data transfer.

1.2 TLB miss in first data transfer.

1.3 TLB protection violation in first data transfer.

1.4 Data address error in second data transfer.

1.5 TLB miss in second data transfer.

1.6 TLB protection violation in second data transfer.

1.7 Initial page write exception in second data transfer.

2 Indivisible delayed branch instruction and delay slot instruction.
As a delayed branch instruction and its associated delay slot instruction are
indivisible, they are treated as a single instruction. Consequently, the priority
order for exceptions that occur in these instructions differs from the usual
priority order. The priority order shown below is for the case where the delay slot
instruction has only one data transfer.

2.1 The delayed branch instruction is checked for priority levels 1 and 2.

2.2 The delay slot instruction is checked for priority levels 1 and 2.

2.3 A check is performed for priority level 3 in the delayed branch instruction and
priority level 3 in the delay slot instruction. (There is no priority ranking
between these two.)

2.4 A check is performed for priority level 4 in the delayed branch instruction and
priority level 4 in the delay slot instruction. (There is no priority ranking
between these two.)

If the delay slot instruction has a second data transfer, two checks are
performed in step b, as in 1 above.

146 Usage notes
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

If the accepted exception (the highest-priority exception) is a delay slot
instruction re-execution type exception, the branch instruction PR register
write operation (PC PR operation performed in BSR, BSRF, JSR) is inhibited.

5.7 Usage notes
1 Return from exception handling

1.1 Check the BL bit in SR with software.
If SPC and SSR have been saved to external memory, set the BL bit in SR to
1 before restoring them.

1.2 Issue an RTE instruction.
When RTE is executed, the SPC contents are set in PC, the SSR contents are
set in SR, and branch is made to the SPC address to return from the
exception handling routine.

2 If an exception or interrupt occurs when SR.BL = 1

2.1 Exception
When an exception other than a user break occurs, the CPUs internal
registers are set to their post-reset state, the registers of the other modules
retain their contents prior to the exception, and the CPU branches to the
same address as in a reset (0xA000 0000). The value in EXPEVT at this time
is 0x0000 0020. The value of the SPC and SSR registers is undefined.

2.2 Interrupt
If an ordinary interrupt occurs, the interrupt request is held pending and is
accepted after the BL bit in SR has been cleared to 0 by software. If a
nonmaskable interrupt (NMI) occurs, it can be held pending or accepted
according to the setting made by software. In the sleep or standby state, an
interrupt is accepted even if the BL bit in SR is set to 1.

3 SPC when an exception occurs

3.1 Re-execution type exception
The PC value for the instruction in which the exception occurred is set in
SPC, and the instruction is re-executed after returning from exception
handling. If an exception occurs in a delay slot instruction, the PC value for
the delay slot instruction is saved in SPC, regardless of whether or not the
preceding delay slot instruction condition is satisfied.

3.2 Completion type exception or interrupt
The PC value for the instruction following that in which the exception

Usage notes 147
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

occurred is set in SPC. If an exception occurs in a branch instruction with
delay slot, the PC value for the branch destination is saved in SPC.

4 An exception must not be generated in an RTE instruction delay slot, as the
operation will be undefined in this case.

148 Usage notes
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

6Floating-point
unit
6.1 Overview

The floating-point unit (FPU) has the following features:

• Conforms to IEEE754 standard

• 32 single-precision floating-point registers (can also be referenced as 16
double-precision registers)

• Two rounding modes: Round to Nearest and Round to Zero

• Two denormalization modes: Flush to Zero and Treat Denormalized Number

• Six exception sources: FPU Error, Invalid Operation, Divide By Zero, Overflow,
Underflow, and Inexact

• Comprehensive instructions: Single-precision, double-precision, graphics
support, system control

When the FD bit in SR is set to 1, the FPU cannot be used, and an attempt to
execute an FPU instruction will cause an FPU disable exception.

150 Floating-point format
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

6.2 Floating-point format
An IEEE754 floating-point number contains three fields: a sign (s), an exponent (e)
and a fraction (f) in the format given in Figure 32.

The sign, s, is the sign of the represented number. If s is 0, the number is positive. If
s is 1, the number is negative.

The exponent, e, is held as a biased value. The relationship between the biased
exponent, e, and the unbiased exponent, E, is given by e = E+bias, where bias is a
fixed positive number. The unbiased exponent, E, takes any value in the range
[Emin-1, Emax+1]. The minimum and maximum values in that range, Emin-1 and
Emax+1, designate special values such as positive zero, negative zero, positive
infinity, negative infinity, denormalized numbers and “Not a Number” (NaN).

The fraction, f, specifies the binary digits that lie to the right of the binary point. A
normalized floating-point number has a leading bit of 1 which lies to the left of the
binary point. A denormalized floating-point number has a leading bit of 0 which lies
to the left of the binary point. The leading bit is implicitly represented; it is
determined by whether the number is normalized or denormalized, and is not
explicitly encoded. The implicit leading bit and the explicit fraction bits together
form the significance of the floating-point number.

Floating-point number value v is determined as follows:

The value, v, of a floating-point number is determined as follows:

NaN: if E = Emax + 1 and f ≠ 0, then v is Not a Number irrespective of the sign s

Positive or negative infinity: if E = Emax + 1 and f = 0, then v = (-1)s (∞)

Normalized number: if Emin ≤ E ≤ Emax, then v = (-1)s 2E(1.f)

Denormalized number: if E = Emin - 1 and f ≠ 0, then v = (-1)s 2Emin(0.f)

Positive or negative zero: if E = Emin - 1 and f = 0, then v = (-1)s 0

Figure 32: IEEE754 floating-point representations

s e f

Floating-point format 151
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

The architecture supports two IEEE754 basic floating-point number formats:
single-precision and double-precision.

Table 35 shows the ranges of the various numbers in hexadecimal notation.

Parameter Single-precision Double-precision

Total bit width 32 bits 64 bits

Sign bit 1 bit 1 bit

Exponent field 8 bits 11 bits

Fraction field 23 bits 52 bits

Precision 24 bits 53 bits

Bias +127 +1023

Emax +127 +1023

Emin -126 -1022

Table 34: Floating-point number formats and parameters

Type Single-precision Double-precision

sNaN (Signaling
not-a-number)

0x7FFFFFFF to 0x7FC00000

 and

0xFFC00000 to
0xFFFFFFFF

0x7FFFFFFF 0xFFFFFFFF to
0x7FF80000 0x00000000
and
0xFFF80000 0x00000000 to
0xFFFFFFFF 0xFFFFFFFF

qNaN (Quiet
not-a-number)

0x7FBFFFFF to 0x7F800001

and

0xFF800001 to 0xFFBFFFFF

0x7FF7FFFF 0xFFFFFFFF to
0x7FF00000 0x00000001
and
0xFFF00000 0x00000001 to
0xFFF7FFFF 0xFFFFFFFF

+INF (Positive infinity) 0x7F800000 0x7FF00000 0x00000

+NORM (Positive
normalized number)

0x7F7FFFFF to 0x00800000 0x7FEFFFFF 0xFFFFFFFF to
0x00100000 0x00000000

Table 35: Floating-point ranges

152 Floating-point format
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

6.2.1 Non-numbers (NaN)

Figure 33 shows the bit pattern of a non-number (NaN).

A floating-point number is a NaN if the exponent field contains the maximum
representable value and the fraction is non-zero, regardless of the value of the sign.
In the figure above, x can have a value of 0 or 1. If the most significant bit of the
fraction (N, in the figure above) is 1, the value is a signaling NaN (sNaN), otherwise
the value is a quiet NaN (qNaN).

An sNAN is input in an operation, except copy, FABS, and FNEG, that generates a
floating-point value.

+DENORM (Positive
denormalized number)

0x007FFFFF to 0x00000001 0x000FFFFF 0xFFFFFFFF to
0x00000000 0x00000001

+0.0 (Positive zero) 0x00000000 0x00000000 0x00000000

- 0.0 (Negative zero) 0x80000000 0x80000000 0x00000000

-DENORM (Negative
denormalized number)

0x80000001 to 0x807FFFFF 0x80000000 0x00000001 to
0x800FFFFF 0xFFFFFFFF

-NORM (Negative
normalized number)

0x80800000 to 0xFF7FFFFF 0x80100000 0x00000000 to
0xFFEFFFFF 0xFFFFFFFF

-INF (Negative infinity) 0xFF800000 0xFFF00000 0x00000000

Type Single-precision Double-precision

Table 35: Floating-point ranges

Figure 33: Single-precision NaN bit pattern

31

x 11111111 Nxxxxxxxxxxxxxxxxxxxxxx

30 23 22 0

N = 1: sNaN
N = 0: qNaN

Rounding 153
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

• When the EN.V bit in the FPSCR register is 0, the operation result (output) is a
qNaN.

• When the EN.V bit in the FPSCR register is 1, an invalid operation exception
will be generated. In this case, the contents of the operation destination register
are unchanged.

If a qNaN is input in an operation that generates a floating-point value, and an
sNaN has not been input in that operation, the output will always be a qNaN
irrespective of the setting of the EN.V bit in the FPSCR register. An exception will
not be generated in this case.

See the individual instruction descriptions for details of floating-point operations
when a non-number (NaN) is input.

6.2.2 Denormalized numbers

For a denormalized number floating-point value, the exponent field is expressed as
0, and the fraction field as a non-zero value.

When the DN bit in the FPU’s status register FPSCR is 1, a denormalized number
(source operand or operation result) is always flushed to 0 in a floating-point
operation that generates a value (an operation other than copy, FNEG, or FABS).

When the DN bit in FPSCR is 0, a denormalized number (source operand or
operation result) is processed as it is. See the individual instruction descriptions for
details of floating-point operations when a denormalized number is input.

6.3 Rounding
In a floating-point instruction, rounding is performed when generating the final
operation result from the intermediate result. Therefore, the result of combination
instructions such as FMAC, FTRV, and FIPR will differ from the result when using
a basic instruction such as FADD, FSUB, or FMUL. Rounding is performed once in
FMAC, but twice in FADD, FSUB, and FMUL.

There are two rounding methods, the method to be used being determined by the
RM field in FPSCR.

• RM = 00: Round to Nearest

• RM = 01: Round to Zero

154 Floating-point exceptions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Round to Nearest:
The value is rounded to the nearest expressible value. If there are two nearest
expressible values, the one with an LSB of 0 is selected.

If the unrounded value is 2Emax (2-2-P) or more, the result will be infinity with the
same sign as the unrounded value. The values of Emax and P, respectively, are 127
and 24 for single-precision, and 1023 and 53 for double-precision.

Round to Zero:
The digits below the round bit of the unrounded value are discarded.

If the unrounded value is larger than the maximum expressible absolute value, the
value will be the maximum expressible absolute value.

6.4 Floating-point exceptions
FPU-related exceptions are as follows:

• General illegal instruction/slot illegal instruction exception

The exception occurs if an FPU instruction is executed when SR.FD = 1.

• FPU exceptions

The exception sources are as follows:

- FPU error (E): When FPSCR.DN = 0 and a denormalized number is input

- Invalid operation (V): In case of an invalid operation, such as NaN input

- Division by zero (Z): Division with a zero divisor

- Overflow (O): When the operation result overflows

- Underflow (U): When the operation result underflows

- Inexact exception (I): When overflow, underflow, or rounding occurs

The FPSCR cause field contains bits corresponding to all of above sources E, V,
Z, O, U, and I, and the FPSCR flag and enable fields contain bits corresponding
to sources V, Z, O, U, and I, but not E. Thus, FPU errors cannot be disabled.

When an exception source occurs, the corresponding bit in the cause field is set
to 1, and 1 is added to the corresponding bit in the flag field. When an exception
source does not occur, the corresponding bit in the cause field is cleared to 0, but
the corresponding bit in the flag field remains unchanged.

• Enable/disable exception handling

Floating-point exceptions 155
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

The SH-4 CPU core supports enable exception handling and disable exception
handling.

Enable exception handling is initiated in the following cases:

- FPU error (E): FPSCR.DN = 0 and a denormalized number is input

- Invalid operation (V): FPSCR.EN.V = 1 and (instruction = FTRV or invalid
operation)

- Division by zero (Z): FPSCR.EN.Z = 1 and division with a zero divisor

- Overflow (O): FPSCR.EN.O = 1 and instruction with any possibility of the
operation result overflowing

- Underflow (U): FPSCR.EN.U = 1 and instruction with any possibility of the
operation result underflowing

- Inexact exception (I): FPSCR.EN.I = 1 and instruction with any possibility of
an inexact operation result

These possibilities are shown in the individual instruction descriptions. All
exception events that originate in the FPU are assigned as the same
exception event. The meaning of an exception is determined by software by
reading system register FPSCR and interpreting the information it contains.
If no bits are set in the cause field of FPSCR when one or more of bits O, U, I,
and V (in case of FTRV only) are set in the enable field, this indicates that an
actual exception source is not generated. Also, the destination register is not
changed by any enable exception handling operation.

Except for the above, the FPU disables exception handling. In all processing,
the bit corresponding to source V, Z, O, U, or I is set to 1, and disable
exception handling is provided for each exception.

- Invalid operation (V): qNAN is generated as the result.

- Division by zero (Z): Infinity with the same sign as the unrounded value is
generated.

- Overflow (O):

When rounding mode = RZ, the maximum normalized number, with the same
sign as the unrounded value, is generated.

When rounding mode = RN, infinity with the same sign as the unrounded
value is generated.

- Underflow (U):

156 Graphics support functions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

When FPSCR.DN = 0, a denormalized number with the same sign as the
unrounded value, or zero with the same sign as the unrounded value, is
generated.

When FPSCR.DN = 1, zero with the same sign as the unrounded value, is
generated.

- Inexact exception (I): An inexact result is generated.

6.5 Graphics support functions
The SH-4 CPU core supports two kinds of graphics functions: new instructions for
geometric operations, and pair single-precision transfer instructions that enable
high-speed data transfer.

6.5.1 Geometric operation instructions

Geometric operation instructions perform approximate-value computations. To
enable high-speed computation with a minimum of hardware, the SH-4 CPU core
ignores comparatively small values in the partial computation results of four
multiplications. Consequently, the error shown below is produced in the result of the
computation:

Maximum error = MAX (individual multiplication result x 2-MIN (number of multiplier
significant digits1, number of multiplicand significant digits1)) + MAX (result value x 2-23, 2-149)

The number of significant digits is 24 for a normalized number and 23 for a
denormalized number (number of leading zeros in the fractional part).

In future versions of the SuperH series, the above error is guaranteed, but the same
result as SH-4 is not guaranteed.

FIPR FVm, FVn (m, n: 0, 4, 8, 12): This instruction is basically used for the
following purposes:

• Inner product (m does not= n):

This operation is generally used for surface/rear surface determination for
polygon surfaces.

• Sum of square of elements (m = n):

This operation is generally used to find the length of a vector.

Graphics support functions 157
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Since approximate-value computations are performed to enable high-speed
computation, the inexact exception (I) bit in the cause field and flag field is always
set to 1 when an FIPR instruction is executed. Therefore, if the corresponding bit is
set in the enable field, enable exception handling will be executed.

158 Graphics support functions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FTRV XMTRX, FVn (n: 0, 4, 8, 12): This instruction is basically used for the
following purposes:

• Matrix (4 x 4). vector (4):

This operation is generally used for viewpoint changes, angle changes, or
movements called vector transformations (4-dimensional). Since affine
transformation processing for angle + parallel movement basically requires a 4 x
4 matrix, the SH-4 CPU core supports 4-dimensional operations.

• Matrix (4 x 4) x matrix (4 x 4):

This operation requires the execution of four FTRV instructions.

Since approximate-value computations are performed to enable high-speed
computation, the inexact exception (I) bit in the cause field and flag field is always
set to 1 when an FTRV instruction is executed. Therefore, if the corresponding bit is
set in the enable field, enable exception handling will be executed. For the same
reason, it is not possible to check all data types in the registers beforehand when
executing an FTRV instruction. If the V bit is set in the enable field, enable
exception handling will be executed.

FRCHG: This instruction modifies banked registers. For example, when the FTRV
instruction is executed, matrix elements must be set in an array in the background
bank. However, to create the actual elements of a translation matrix, it is easier to
use registers in the foreground bank. When the LDC instruction is used on FPSCR,
this instruction expends 4 to 5 cycles in order to maintain the FPU state. With the
FRCHG instruction, an FPSCR.FR bit modification can be performed in one cycle.

6.5.2 Pair single-precision data transfer

In addition to the powerful new geometric operation instructions, the SH-4 CPU
core also supports high-speed data transfer instructions.

When FPSCR.SZ = 1, the SH-4 CPU core can perform data transfer by means of pair
single-precision data transfer instructions.

• FMOV DRm/XDm, DRn/XDRn (m, n: 0, 2, 4, 6, 8, 10, 12, 14)

• FMOV DRm/XDm, @Rn (m: 0, 2, 4, 6, 8, 10, 12, 14; n: 0 to 15)

These instructions enable two single-precision (2 32-bit) data items to be
transferred; that is, the transfer performance of these instructions is doubled.

• FSCHG - this instruction changes the value of the SZ bit in FPSCR, enabling
fast switching between use and non-use of pair single-precision data transfer.

PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

7Instruction
set
7.1 Execution environment

PC

At the start of instruction execution, PC indicates the address of the instruction
itself.

Data sizes and data types: The SH-4 instruction set is implemented with 16-bit
fixed-length instructions. The SH-4 CPU core can use byte (8-bit), word (16-bit),
longword (32-bit), and quadword (64-bit) data sizes for memory access.
Single-precision floating-point data (32 bits) can be moved to and from memory
using longword or quadword size. Double-precision floating-point data (64 bits) can
be moved to and from memory using longword size. When a double-precision
floating-point operation is specified (FPSCR.PR = 1), the result of an operation
using quadword access will be undefined. When the SH-4 CPU core moves byte-size
or word-size data from memory to a register, the data is sign-extended.

Load-store architecture

The SH-4 CPU core features a load-store architecture in which operations are
basically executed using registers. Except for bit-manipulation operations such as
logical AND that are executed directly in memory, operands in an operation that
requires memory access are loaded into registers and the operation is executed
between the registers.

160 Execution environment
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Delayed branches

Except for the two branch instructions BF and BT, the SH-4’s branch instructions
and RTE are delayed branches. In a delayed branch, the instruction following the
branch is executed before the branch destination instruction. This execution slot
following a delayed branch is called a delay slot. For example, the BRA execution
sequence is as follows:

Delay slot

An illegal instruction exception may occur when a specific instruction is executed in
a delay slot. See section 5, Exceptions. The instruction following BF/S or BT/S for
which the branch is not taken is also a delay slot instruction.

T bit

The T bit in the status register (SR) is used to show the result of a compare
operation, and is referenced by a conditional branch instruction. An example of the
use of a conditional branch instruction is shown below.

In an RTE delay slot, status register (SR) bits are referenced as follows. In
instruction access, the MD bit is used before modification, and in data access, the
MD bit is accessed after modification. The other bits S, T, M, Q, FD, BL, and RB
after modification are used for delay slot instruction execution. The STC and STC.L
SR instructions access all SR bits after modification.

Static sequence Dynamic sequence

BRA TARGET BRA TARGET

ADD next_2 R1, R0 ADD
target_instr

R1, R0 ADD in delay slot is executed
before branching to TARGET

ADD #1, R0 T bit is not changed by ADD operation

CMP/EQ R1, R0 If R0 = R1, T bit is set to 1

BT TARGET Branches to TARGET if T bit = 1 (R0 = R1)

Execution environment 161
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Constant values

An 8-bit constant value can be specified by the instruction code and an immediate
value. 16-bit and 32-bit constant values can be defined as literal constant values in
memory, and can be referenced by a PC-relative load instruction.

There are no PC-relative load instructions for floating-point operations. However, it
is possible to set 0.0 or 1.0 by using the FLDI0 or FLDI1 instruction on a
single-precision floating-point register.

MOV.W @(disp, PC), Rn

MOV.L @(disp, PC), Rn

162 Addressing modes
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

7.2 Addressing modes
Addressing modes and effective address calculation methods are shown in Table 36.
When a location in virtual memory space is accessed (MMUCR.AT = 1), the effective
address is translated into a physical memory address. If multiple virtual memory
space systems are selected (MMUCR.SV = 0), the least significant bit of PTEH is
also referenced as the access ASID. See Chapter 3: Memory management unit
(MMU) on page 45.

Addressing
mode

Instruction
format

Effective address calculation method
Calculation

formula

Register
direct

Rn Effective address is register Rn.
(Operand is register Rn contents.)

—

Register
indirect

@Rn Effective address is register Rn contents. Rn → EA
(EA: effective
address)

Register
indirect
with
post-increment

@Rn+ Effective address is register Rn contents.
A constant is added to Rn after instruction
execution: 1 for a byte operand, 2 for a word
operand, 4 for a longword operand, 8 for a quadword
operand.

Rn → EA
After
instruction
execution
Byte:
Rn + 1 → Rn
Word:
Rn + 2 → Rn
Longword:
Rn + 4 → Rn
Quadword:
Rn + 8 → Rn

Table 36: Addressing modes and fffective addresses

Rn Rn

Rn Rn

1/2/4/8

+Rn + 1/2/4/8

Addressing modes 163
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Register
indirect
with
pre-decrement

@–Rn Effective address is register Rn contents,
decremented by a constant beforehand:
1 for a byte operand, 2 for a word operand,
4 for a longword operand, 8 for a quadword operand.

Byte:
Rn – 1 → Rn
Word:
Rn – 2 → Rn
Longword:
Rn – 4 → Rn
Quadword:
Rn – 8 → Rn
Rn → EA
(Instruction
executed
with Rn after
calculation)

Register
indirect with
displacement

@(disp:4,
Rn)

Effective address is register Rn contents with
4-bit displacement disp added. After disp is
zero-extended, it is multiplied by 1 (byte), 2 (word),
or 4 (longword), according to the operand size.

Byte: Rn +
disp → EA

Word: Rn +
disp × 2 → EA

Longword:
Rn + disp × 4
→ EA

Indexed
register
indirect

@(R0, Rn) Effective address is sum of register Rn and R0
contents.

Rn + R0 →
EA

Addressing
mode

Instruction
format

Effective address calculation method
Calculation

formula

Table 36: Addressing modes and fffective addresses

Rn

1/2/4/8

Rn – 1/2/4/8–Rn – 1/2/4/8

Rn

Rn + disp × 1/2/4+

×

1/2/4

disp
(zero-extended)

Rn

R0

Rn + R0+

164 Addressing modes
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

GBR indirect
with
displacement

@(disp:8,
GBR)

Effective address is register GBR contents with
8-bit displacement disp added. After disp is
zero-extended, it is multiplied by 1 (byte), 2 (word),
or 4 (longword), according to the operand size.

Byte: GBR +
disp → EA

Word: GBR +
disp × 2 → EA

Longword:
GBR + disp ×
4 → EA

Indexed GBR
indirect

@(R0, GBR) Effective address is sum of register GBR and R0
contents.

GBR + R0 →
EA

Addressing
mode

Instruction
format

Effective address calculation method
Calculation

formula

Table 36: Addressing modes and fffective addresses

GBR

1/2/4

GBR
+ disp × 1/2/4

+

×

disp
(zero-extended)

GBR

R0

GBR + R0+

Addressing modes 165
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

PC-relative
with
displacement

@(disp:8,
PC)

Effective address is PC+4 with 8-bit displacement
disp added. After disp is zero-extended, it is
multiplied by 2 (word), or 4 (longword), according
to the operand size. With a longword operand,
the lower 2 bits of PC are masked.

Word: PC + 4
+ disp × 2 →
EA

Longword:
PC &
0xFFFFFFFC
+ 4 + disp × 4
→ EA

PC-relative disp:8 Effective address is PC+4 with 8-bit displacement
disp added after being sign-extended and
multiplied by 2.

PC + 4 + disp
× 2 →
Branch-Target

Addressing
mode

Instruction
format

Effective address calculation method
Calculation

formula

Table 36: Addressing modes and fffective addresses

PC

H'FFFFFFFC

PC + 4 + disp
× 2

or PC &
 H'FFFFFFFC
+ 4 + disp × 4

+
4

2/4

×

+

& *

disp
(zero-extended)

* With longword operand

OxFFFFFFFC

OxFFFFFFFC

2

+

×

disp
(sign-extended)

4

+

PC

PC + 4 + disp × 2

166 Addressing modes
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Note: For the addressing modes below that use a displacement (disp), the assembler
descriptions in this manual show the value before scaling (×1, ×2, or ×4) is performed
according to the operand size. This is done to clarify the operation of the chip. Refer to
the relevant assembler notation rules for the actual assembler descriptions.

PC-relative disp:12 Effective address is PC+4 with 12-bit displacement
disp added after being sign-extended and
multiplied by 2.

PC + 4 + disp
× 2 →
Branch-Target

Rn Effective address is sum of PC+4 and Rn. PC + 4 + Rn
→
Branch-Target

Immediate #imm:8 8-bit immediate data imm of TST, AND, OR, or XOR
instruction is zero-extended.

—

#imm:8 8-bit immediate data imm of MOV, ADD, or CMP/EQ
instruction is sign-extended.

—

@ (disp:4, Rn) Register indirect with displacement
@ (disp:8, GBR) GBR indirect with displacement
@ (disp:8, PC) PC-relative with displacement
disp:8, disp:12 PC-relative

Addressing
mode

Instruction
format

Effective address calculation method
Calculation

formula

Table 36: Addressing modes and fffective addresses

2

+

×

disp
(sign-extended)

4

+

PC

PC + 4 + disp × 2

PC

4

Rn

+

+ PC + 4 + Rn

Instruction set summary 167
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

7.3 Instruction set summary
Table 37 shows the notation used in the following SH instruction list.

Item Format Description

Instruction
mnemonic

OP.Sz SRC, DEST OP: Operation code
Sz: Size
SRC: Source
DEST: Source and/or destination operand

Summary of
operation

→, ← Transfer direction
(xx) Memory operand
M/Q/T SR flag bits
& Logical AND of individual bits
| Logical OR of individual bits
∧ Logical exclusive-OR of individual bits
~ Logical NOT of individual bits
<<n, >>n n-bit shift

Instruction
code

MSB ↔ LSB mmmm: Register number (Rm, FRm)
nnnn: Register number (Rn, FRn)
0000: R0, FR0
0001: R1, FR1
:
1111: R15, FR15
mmm: Register number (DRm, XDm, Rm_BANK)
nnn: Register number (DRm, XDm, Rn_BANK)
000: DR0, XD0, R0_BANK
001: DR2, XD2, R1_BANK
:
111: DR14, XD14, R7_BANK
mm: Register number (FVm)
nn: Register number (FVn)
00: FV0
01: FV4
10: FV8
11: FV12
iiii: Immediate data
dddd: Displacement

Privileged
mode

“Privileged” means the instruction can only be executed in
privileged mode.

Table 37: Notation used in instruction list

168 Instruction set summary
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Note: Scaling (×1, ×2, ×4, or ×8) is executed according to the size of the instruction
operand(s).

T bit Value of T bit after
instruction execution

—: No change

Instruction Operation Instruction code Privileged T bit

MOV #imm,Rn imm → sign extension → Rn 1110nnnniiiiiiii — —

MOV.W @(disp,PC),Rn (disp × 2 + PC + 4) → sign
extension → Rn

1001nnnndddddddd — —

MOV.L @(disp,PC),Rn (disp × 4 + PC & 0xFFFFFFFC
+ 4) → Rn

1101nnnndddddddd — —

MOV Rm,Rn Rm → Rn 0110nnnnmmmm0011 — —

MOV.B Rm,@Rn Rm → (Rn) 0010nnnnmmmm0000 — —

MOV.W Rm,@Rn Rm → (Rn) 0010nnnnmmmm0001 — —

MOV.L Rm,@Rn Rm → (Rn) 0010nnnnmmmm0010 — —

MOV.B @Rm,Rn (Rm) → sign extension → Rn 0110nnnnmmmm0000 — —

MOV.W @Rm,Rn (Rm) → sign extension → Rn 0110nnnnmmmm0001 — —

MOV.L @Rm,Rn (Rm) → Rn 0110nnnnmmmm0010 — —

MOV.B Rm,@-Rn Rn-1 → Rn, Rm → (Rn) 0010nnnnmmmm0100 — —

MOV.W Rm,@-Rn Rn-2 → Rn, Rm → (Rn) 0010nnnnmmmm0101 — —

MOV.L Rm,@-Rn Rn-4 → Rn, Rm → (Rn) 0010nnnnmmmm0110 — —

MOV.B @Rm+,Rn (Rm)→ sign extension → Rn,
Rm + 1 → Rm

0110nnnnmmmm0100 — —

MOV.W @Rm+,Rn (Rm) → sign extension → Rn,
Rm + 2 → Rm

0110nnnnmmmm0101 — —

MOV.L @Rm+,Rn (Rm) → Rn, Rm + 4 → Rm 0110nnnnmmmm0110 — —

Table 38: Fixed-point transfer instructions

Item Format Description

Table 37: Notation used in instruction list

Instruction set summary 169
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

MOV.B R0,@(disp,Rn) R0 → (disp + Rn) 10000000nnnndddd — —

MOV.W R0,@(disp,Rn) R0 → (disp × 2 + Rn) 10000001nnnndddd — —

MOV.L Rm,@(disp,Rn) Rm → (disp × 4 + Rn) 0001nnnnmmmmdddd — —

MOV.B @(disp,Rm),R0 (disp + Rm) → sign extension
→ R0

10000100mmmmdddd — —

MOV.W @(disp,Rm),R0 (disp × 2 + Rm) → sign
extension → R0

10000101mmmmdddd — —

MOV.L @(disp,Rm),Rn (disp × 4 + Rm) → Rn 0101nnnnmmmmdddd — —

MOV.B Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0100 — —

MOV.W Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0101 — —

MOV.L Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0110 — —

MOV.B @(R0,Rm),Rn (R0 + Rm) → sign extension
→ Rn

0000nnnnmmmm1100 — —

MOV.W @(R0,Rm),Rn (R0 + Rm) → sign extension
→ Rn

0000nnnnmmmm1101 — —

MOV.L @(R0,Rm),Rn (R0 + Rm) → Rn 0000nnnnmmmm1110 — —

MOV.B R0,@(disp,GBR) R0 → (disp + GBR) 11000000dddddddd — —

MOV.W R0,@(disp,GBR) R0 → (disp × 2 + GBR) 11000001dddddddd — —

MOV.L R0,@(disp,GBR) R0 → (disp × 4 + GBR) 11000010dddddddd — —

MOV.B @(disp,GBR),R0 (disp + GBR) →
sign extension → R0

11000100dddddddd — —

MOV.W @(disp,GBR),R0 (disp × 2 + GBR) →
sign extension → R0

11000101dddddddd — —

MOV.L @(disp,GBR),R0 (disp × 4 + GBR) → R0 11000110dddddddd — —

MOVA @(disp,PC),R0 disp × 4 + PC & 0xFFFFFFFC
+ 4 → R0

11000111dddddddd — —

MOVT Rn T → Rn 0000nnnn00101001 — —

Instruction Operation Instruction code Privileged T bit

Table 38: Fixed-point transfer instructions

170 Instruction set summary
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

SWAP.B Rm,Rn Rm → swap lower 2 bytes
→ REG

0110nnnnmmmm1000 — —

SWAP.W Rm,Rn Rm → swap upper/lower
words → Rn

0110nnnnmmmm1001 — —

XTRCT Rm,Rn Rm:Rn middle 32 bits → Rn 0010nnnnmmmm1101 — —

Instruction Operation Instruction code Privileged T Bit

ADD Rm,Rn Rn + Rm → Rn 0011nnnnmmmm1100 — —

ADD #imm,Rn Rn + imm → Rn 0111nnnniiiiiiii — —

ADDC Rm,Rn Rn + Rm + T → Rn, carry → T 0011nnnnmmmm1110 — Carry

ADDV Rm,Rn Rn + Rm → Rn, overflow → T 0011nnnnmmmm1111 — Overflow

CMP/EQ #imm,R0 When R0 = imm, 1 → T
Otherwise, 0 → T

10001000iiiiiiii — Comparison
result

CMP/EQ Rm,Rn When Rn = Rm, 1 → T
Otherwise, 0 → T

0011nnnnmmmm0000 — Comparison
result

CMP/HS Rm,Rn When Rn ≥ Rm (unsigned),
1 → T
Otherwise, 0 → T

0011nnnnmmmm0010 — Comparison
result

CMP/GE Rm,Rn When Rn ≥ Rm (signed), 1 →
T
Otherwise, 0 → T

0011nnnnmmmm0011 — Comparison
result

CMP/HI Rm,Rn When Rn > Rm (unsigned),
1 → T
Otherwise, 0 → T

0011nnnnmmmm0110 — Comparison
result

CMP/GT Rm,Rn When Rn > Rm (signed), 1 →
T
Otherwise, 0 → T

0011nnnnmmmm0111 — Comparison
result

Table 39: Arithmetic operation instructions

Instruction Operation Instruction code Privileged T bit

Table 38: Fixed-point transfer instructions

Instruction set summary 171
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

CMP/PZ Rn When Rn ≥ 0, 1 → T
Otherwise, 0 → T

0100nnnn00010001 — Comparison
result

CMP/PL Rn When Rn > 0, 1 → T
Otherwise, 0 → T

0100nnnn00010101 — Comparison
result

CMP/STR Rm,Rn When any bytes are equal,
1 → T
Otherwise, 0 → T

0010nnnnmmmm1100 — Comparison
result

DIV1 Rm,Rn 1-step division (Rn ÷ Rm) 0011nnnnmmmm0100 — Calculation
result

DIV0S Rm,Rn MSB of Rn → Q,
MSB of Rm → M, M^Q → T

0010nnnnmmmm0111 — Calculation
result

DIV0U 0 → M/Q/T 0000000000011001 — 0

DMULS.L Rm,Rn Signed, Rn × Rm → MAC,
32 × 32 → 64 bits

0011nnnnmmmm1101 — —

DMULU.L Rm,Rn Unsigned, Rn × Rm → MAC,
32 × 32 → 64 bits

0011nnnnmmmm0101 — —

DT Rn Rn – 1 → Rn; when Rn = 0,
1 → T
When Rn ≠ 0, 0 → T

0100nnnn00010000 — Comparison
result

EXTS.B Rm,Rn Rm sign-extended from
byte → Rn

0110nnnnmmmm1110 — —

EXTS.W Rm,Rn Rm sign-extended from
word → Rn

0110nnnnmmmm1111 — —

EXTU.B Rm,Rn Rm zero-extended from
byte → Rn

0110nnnnmmmm1100 — —

EXTU.W Rm,Rn Rm zero-extended from
word → Rn

0110nnnnmmmm1101 — —

MAC.L @Rm+,@
Rn+

Signed, (Rn) × (Rm) + MAC →
MAC
Rn + 4 → Rn, Rm + 4 → Rm
32 × 32 + 64 → 64 bits

0000nnnnmmmm1111 — —

Instruction Operation Instruction code Privileged T Bit

Table 39: Arithmetic operation instructions

172 Instruction set summary
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

MAC.W @Rm+,@
Rn+

Signed, (Rn) × (Rm) + MAC →
MAC
Rn + 2 → Rn, Rm + 2 → Rm
16 × 16 + 64 → 64 bits

0100nnnnmmmm1111 — —

MUL.L Rm,Rn Rn × Rm → MACL
32 × 32 → 32 bits

0000nnnnmmmm0111 — —

MULS.W Rm,Rn Signed, Rn × Rm → MACL
16 × 16 → 32 bits

0010nnnnmmmm1111 — —

MULU.W Rm,Rn Unsigned, Rn × Rm → MACL
16 × 16 → 32 bits

0010nnnnmmmm1110 — —

NEG Rm,Rn 0 – Rm → Rn 0110nnnnmmmm1011 — —

NEGC Rm,Rn 0 – Rm – T → Rn, borrow → T 0110nnnnmmmm1010 — Borrow

SUB Rm,Rn Rn – Rm → Rn 0011nnnnmmmm1000 — —

SUBC Rm,Rn Rn – Rm – T → Rn, borrow →
T

0011nnnnmmmm1010 — Borrow

SUBV Rm,Rn Rn – Rm → Rn, underflow →
T

0011nnnnmmmm1011 — Underflow

Instruction Operation Instruction code Privileged T Bit

Table 39: Arithmetic operation instructions

Instruction set summary 173
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Instruction Operation Instruction code Privileged T Bit

AND Rm,Rn Rn & Rm → Rn 0010nnnnmmmm1001 — —

AND #imm,R0 R0 & imm → R0 11001001iiiiiiii — —

AND.B #imm,@(R0,GBR) (R0 + GBR) & imm → (R0 +
GBR)

11001101iiiiiiii — —

NOT Rm,Rn ~Rm → Rn 0110nnnnmmmm0111 — —

OR Rm,Rn Rn | Rm → Rn 0010nnnnmmmm1011 — —

OR #imm,R0 R0 | imm → R0 11001011iiiiiiii — —

OR.B #imm,@(R0,GBR) (R0 + GBR) | imm → (R0 +
GBR)

11001111iiiiiiii —

TAS.B @Rn When (Rn) = 0, 1 → T
Otherwise, 0 → T
In both cases, 1 → MSB of
(Rn)

0100nnnn00011011 — Test
result

TST Rm,Rn Rn & Rm; when result = 0,
1 → T
Otherwise, 0 → T

0010nnnnmmmm1000 — Test
result

TST #imm,R0 R0 & imm; when result = 0,
1 → T
Otherwise, 0 → T

11001000iiiiiiii — Test
result

TST.B #imm,@(R0,GBR) (R0 + GBR) & imm; when
result = 0, 1 → T
Otherwise, 0 → T

11001100iiiiiiii — Test
result

XOR Rm,Rn Rn ∧ Rm → Rn 0010nnnnmmmm1010 — —

XOR #imm,R0 R0 ∧ imm → R0 11001010iiiiiiii — —

XOR.B #imm,@(R0,GBR) (R0 + GBR) ∧ imm → (R0 +
GBR)

11001110iiiiiiii — —

Table 40: Logic operation instructions

174 Instruction set summary
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Instruction Operation Instruction code Privileged T bit

ROTL Rn T ← Rn ← MSB 0100nnnn00000100 — MSB

ROTR Rn LSB → Rn → T 0100nnnn00000101 — LSB

ROTCL Rn T ← Rn ← T 0100nnnn00100100 — MSB

ROTCR Rn T → Rn → T 0100nnnn00100101 — LSB

SHAD Rm,Rn When Rn ≥ 0, Rn << Rm → Rn
When Rn < 0, Rn >> Rm →
[MSB → Rn]

0100nnnnmmmm1100 — —

SHAL Rn T ← Rn ← 0 0100nnnn00100000 — MSB

SHAR Rn MSB → Rn → T 0100nnnn00100001 — LSB

SHLD Rm,Rn When Rn ≥ 0, Rn << Rm → Rn
When Rn < 0, Rn >> Rm →
[0 → Rn]

0100nnnnmmmm1101 — —

SHLL Rn T ← Rn ← 0 0100nnnn00000000 — MSB

SHLR Rn 0 → Rn → T 0100nnnn00000001 — LSB

SHLL2 Rn Rn << 2 → Rn 0100nnnn00001000 — —

SHLR2 Rn Rn >> 2 → Rn 0100nnnn00001001 — —

SHLL8 Rn Rn << 8 → Rn 0100nnnn00011000 — —

SHLR8 Rn Rn >> 8 → Rn 0100nnnn00011001 — —

SHLL16 Rn Rn << 16 → Rn 0100nnnn00101000 — —

SHLR16 Rn Rn >> 16 → Rn 0100nnnn00101001 — —

Table 41: Shift instructions

Instruction set summary 175
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Instruction Operation Instruction code Privileged T bit

BF label When T = 0, disp × 2 + PC +
4 → PC
When T = 1, nop

10001011dddddddd — —

BF/S label Delayed branch; when T = 0,
disp × 2 + PC + 4 → PC
When T = 1, nop

10001111dddddddd — —

BT label When T = 1, disp × 2 + PC +
4 → PC
When T = 0, nop

10001001dddddddd — —

BT/S label Delayed branch; when T = 1,
disp × 2 + PC + 4 → PC
When T = 0, nop

10001101dddddddd — —

BRA label Delayed branch, disp × 2 +
PC + 4 → PC

1010dddddddddddd — —

BRAF Rn Rn + PC + 4 → PC 0000nnnn00100011 — —

BSR label Delayed branch, PC + 4 → PR,
disp × 2 + PC + 4 → PC

1011dddddddddddd — —

BSRF Rn Delayed branch, PC + 4 → PR,
Rn + PC + 4 → PC

0000nnnn00000011 — —

JMP @Rn Delayed branch, Rn → PC 0100nnnn00101011 — —

JSR @Rn Delayed branch, PC + 4 → PR,
Rn → PC

0100nnnn00001011 — —

RTS Delayed branch, PR → PC 0000000000001011 — —

Table 42: Branch instructions

176 Instruction set summary
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Instruction Operation Instruction code Privileged T bit

CLRMAC 0 → MACH, MACL 0000000000101000 — —

CLRS 0 → S 0000000001001000 — —

CLRT 0 → T 0000000000001000 — 0

LDC Rm,SR Rm → SR 0100mmmm00001110 Privileged LSB

LDC Rm,GBR Rm → GBR 0100mmmm00011110 — —

LDC Rm,VBR Rm → VBR 0100mmmm00101110 Privileged —

LDC Rm,SSR Rm → SSR 0100mmmm00111110 Privileged —

LDC Rm,SPC Rm → SPC 0100mmmm01001110 Privileged —

LDC Rm,DBR Rm → DBR 0100mmmm11111010 Privileged —

LDC Rm,Rn_BANK Rm → Rn_BANK (n = 0 to 7) 0100mmmm1nnn1110 Privileged —

LDC.L @Rm+,SR (Rm) → SR, Rm + 4 → Rm 0100mmmm00000111 Privileged LSB

LDC.L @Rm+,GBR (Rm) → GBR, Rm + 4 → Rm 0100mmmm00010111 — —

LDC.L @Rm+,VBR (Rm) → VBR, Rm + 4 → Rm 0100mmmm00100111 Privileged —

LDC.L @Rm+,SSR (Rm) → SSR, Rm + 4 → Rm 0100mmmm00110111 Privileged —

LDC.L @Rm+,SPC (Rm) → SPC, Rm + 4 → Rm 0100mmmm01000111 Privileged —

LDC.L @Rm+,DBR (Rm) → DBR, Rm + 4 → Rm 0100mmmm11110110 Privileged —

LDC.L @Rm+,Rn_BANK (Rm) → Rn_BANK,
Rm + 4 → Rm

0100mmmm1nnn0111 Privileged —

LDS Rm,MACH Rm → MACH 0100mmmm00001010 — —

LDS Rm,MACL Rm → MACL 0100mmmm00011010 — —

LDS Rm,PR Rm → PR 0100mmmm00101010 — —

LDS.L @Rm+,MACH (Rm) → MACH, Rm + 4 →
Rm

0100mmmm00000110 — —

LDS.L @Rm+,MACL (Rm) → MACL, Rm + 4 → Rm 0100mmmm00010110 — —

LDS.L @Rm+,PR (Rm) → PR, Rm + 4 → Rm 0100mmmm00100110 — —

Table 43: System control instructions

Instruction set summary 177
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

LDTLB PTEH/PTEL → TLB 0000000000111000 Privileged —

MOVCA.L R0,@Rn R0 → (Rn) (without fetching
cache block)

0000nnnn11000011 — —

NOP No operation 0000000000001001 — —

OCBI @Rn Invalidates operand cache
block

0000nnnn10010011 — —

OCBP @Rn Writes back and invalidates
operand cache block

0000nnnn10100011 — —

OCBWB @Rn Writes back operand cache
block

0000nnnn10110011 — —

PREF @Rn (Rn) → operand cache 0000nnnn10000011 — —

RTE Delayed branch, SSR/SPC →
SR/PC

0000000000101011 Privileged —

SETS 1 → S 0000000001011000 — —

SETT 1 → T 0000000000011000 — 1

SLEEP Sleep or standby 0000000000011011 Privileged —

STC SR,Rn SR → Rn 0000nnnn00000010 Privileged —

STC GBR,Rn GBR → Rn 0000nnnn00010010 — —

STC VBR,Rn VBR → Rn 0000nnnn00100010 Privileged —

STC SSR,Rn SSR → Rn 0000nnnn00110010 Privileged —

STC SPC,Rn SPC → Rn 0000nnnn01000010 Privileged —

STC SGR,Rn SGR → Rn 0000nnnn00111010 Privileged —

STC DBR,Rn DBR → Rn 0000nnnn11111010 Privileged —

STC Rm_BANK,Rn Rm_BANK → Rn (m = 0 to 7) 0000nnnn1mmm0010 Privileged —

STC.L SR,@-Rn Rn – 4 → Rn, SR → (Rn) 0100nnnn00000011 Privileged —

STC.L GBR,@-Rn Rn – 4 → Rn, GBR → (Rn) 0100nnnn00010011 — —

STC.L VBR,@-Rn Rn – 4 → Rn, VBR → (Rn) 0100nnnn00100011 Privileged —

Instruction Operation Instruction code Privileged T bit

Table 43: System control instructions

178 Instruction set summary
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

STC.L SSR,@-Rn Rn – 4 → Rn, SSR → (Rn) 0100nnnn00110011 Privileged —

STC.L SPC,@-Rn Rn – 4 → Rn, SPC → (Rn) 0100nnnn01000011 Privileged —

STC.L SGR,@-Rn Rn – 4 → Rn, SGR → (Rn) 0100nnnn00110010 Privileged —

STC.L DBR,@-Rn Rn – 4 → Rn, DBR → (Rn) 0100nnnn11110010 Privileged —

STC.L Rm_BANK,@-Rn Rn – 4 → Rn,
Rm_BANK → (Rn) (m = 0 to
7)

0100nnnn1mmm0011 Privileged —

STS MACH,Rn MACH → Rn 0000nnnn00001010 — —

STS MACL,Rn MACL → Rn 0000nnnn00011010 — —

STS PR,Rn PR → Rn 0000nnnn00101010 — —

STS.L MACH,@-Rn Rn – 4 → Rn, MACH → (Rn) 0100nnnn00000010 — —

STS.L MACL,@-Rn Rn – 4 → Rn, MACL → (Rn) 0100nnnn00010010 — —

STS.L PR,@-Rn Rn – 4 → Rn, PR → (Rn) 0100nnnn00100010 — —

TRAPA #imm PC + 2 → SPC, SR → SSR,
#imm << 2 → TRA,
0x160 → EXPEVT,
VBR + 0x0100 → PC

11000011iiiiiiii — —

Instruction Operation Instruction code Privileged T bit

Table 43: System control instructions

Instruction set summary 179
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Instruction Operation Instruction code Privileged T bit

FLDI0 FRn 0x00000000 → FRn 1111nnnn10001101 — —

FLDI1 FRn 0x3F800000 → FRn 1111nnnn10011101 — —

FMOV FRm,FRn FRm → FRn 1111nnnnmmmm1100 — —

FMOV.S @Rm,FRn (Rm) → FRn 1111nnnnmmmm1000 — —

FMOV.S @(R0,Rm),FRn (R0 + Rm) → FRn 1111nnnnmmmm0110 — —

FMOV.S @Rm+,FRn (Rm) → FRn, Rm + 4 →
Rm

1111nnnnmmmm1001 — —

FMOV.S FRm,@Rn FRm → (Rn) 1111nnnnmmmm1010 — —

FMOV.S FRm,@-Rn Rn-4 → Rn, FRm → (Rn) 1111nnnnmmmm1011 — —

FMOV.S FRm,@(R0,Rn) FRm → (R0 + Rn) 1111nnnnmmmm0111 — —

FMOV DRm,DRn DRm → DRn 1111nnn0mmm01100 — —

FMOV @Rm,DRn (Rm) → DRn 1111nnn0mmmm1000 — —

FMOV @(R0,Rm),DRn (R0 + Rm) → DRn 1111nnn0mmmm0110 — —

FMOV @Rm+,DRn (Rm) → DRn, Rm + 8 →
Rm

1111nnn0mmmm1001 — —

FMOV DRm,@Rn DRm → (Rn) 1111nnnnmmm01010 — —

FMOV DRm,@-Rn Rn-8 → Rn, DRm →
(Rn)

1111nnnnmmm01011 — —

FMOV DRm,@(R0,Rn) DRm → (R0 + Rn) 1111nnnnmmm00111 — —

FLDS FRm,FPUL FRm → FPUL 1111mmmm00011101 — —

FSTS FPUL,FRn FPUL → FRn 1111nnnn00001101 — —

FABS FRn FRn & 0x7FFF FFFF →
FRn

1111nnnn01011101 — —

FADD FRm,FRn FRn + FRm → FRn 1111nnnnmmmm0000 — —

FCMP/EQ FRm,FRn When FRn = FRm, 1 →
T
Otherwise, 0 → T

1111nnnnmmmm0100 — Comparison
result

Table 44: Floating-point single-precision instructions

180 Instruction set summary
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FCMP/GT FRm,FRn When FRn > FRm, 1 →
T
Otherwise, 0 → T

1111nnnnmmmm0101 — Comparison
result

FDIV FRm,FRn FRn/FRm → FRn 1111nnnnmmmm0011 — —

FLOAT FPUL,FRn (float) FPUL → FRn 1111nnnn00101101 — —

FMAC FR0,FRm,FRn FR0*FRm + FRn → FRn 1111nnnnmmmm1110 — —

FMUL FRm,FRn FRn*FRm → FRn 1111nnnnmmmm0010 — —

FNEG FRn FRn ∧ 0x80000000 →
FRn

1111nnnn01001101 — —

FSQRT FRn √FRn → FRn 1111nnnn01101101 — —

FSUB FRm,FRn FRn – FRm → FRn 1111nnnnmmmm0001 — —

FTRC FRm,FPUL (long) FRm → FPUL 1111mmmm00111101 — —

Instruction Operation Instruction code Privileged T bit

FABS DRn DRn & 0x7FFF FFFF FFFF
FFFF → DRn

1111nnn001011101 — —

FADD DRm,DRn DRn + DRm → DRn 1111nnn0mmm00000 — —

FCMP/EQ DRm,DRn When DRn = DRm, 1 → T
Otherwise, 0 → T

1111nnn0mmm00100 — Comparison
result

FCMP/GT DRm,DRn When DRn > DRm, 1 → T
Otherwise, 0 → T

1111nnn0mmm00101 — Comparison
result

FDIV DRm,DRn DRn /DRm → DRn 1111nnn0mmm00011 — —

FCNVDS DRm,FPUL double_to_ float[DRm] →
FPUL

1111mmm010111101 — —

FCNVSD FPUL,DRn float_to_ double [FPUL] →
DRn

1111nnn010101101 — —

Table 45: Floating-point double-precision instructions

Instruction Operation Instruction code Privileged T bit

Table 44: Floating-point single-precision instructions

Instruction set summary 181
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FLOAT FPUL,DRn (float)FPUL → DRn 1111nnn000101101 — —

FMUL DRm,DRn DRn *DRm → DRn 1111nnn0mmm00010 — —

FNEG DRn DRn ^ 0x8000 0000 0000
0000 → DRn

1111nnn001001101 — —

FSQRT DRn √DRn → DRn 1111nnn001101101 — —

FSUB DRm,DRn DRn – DRm → DRn 1111nnn0mmm00001 — —

FTRC DRm,FPUL (long) DRm → FPUL 1111mmm000111101 — —

Instruction Operation Instruction code Privileged T bit

Table 45: Floating-point double-precision instructions

Instruction Operation Instruction code Privileged T bit

LDS Rm,FPSCR Rm → FPSCR 0100mmmm01101010 — —

LDS Rm,FPUL Rm → FPUL 0100mmmm01011010 — —

LDS.L @Rm+,FPSCR (Rm) → FPSCR, Rm+4 → Rm 0100mmmm01100110 — —

LDS.L @Rm+,FPUL (Rm) → FPUL, Rm+4 → Rm 0100mmmm01010110 — —

STS FPSCR,Rn FPSCR → Rn 0000nnnn01101010 — —

STS FPUL,Rn FPUL → Rn 0000nnnn01011010 — —

STS.L FPSCR,@-Rn Rn – 4 → Rn, FPSCR → (Rn) 0100nnnn01100010 — —

STS.L FPUL,@-Rn Rn – 4 → Rn, FPUL → (Rn) 0100nnnn01010010 — —

Table 46: Floating-point control instructions

182 Instruction set summary
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Instruction Operation Instruction Code Privileged T Bit

FMOV DRm,XDn DRm → XDn 1111nnn1mmm01100 — —

FMOV XDm,DRn XDm → DRn 1111nnn0mmm11100 — —

FMOV XDm,XDn XDm → XDn 1111nnn1mmm11100 — —

FMOV @Rm,XDn (Rm) → XDn 1111nnn1mmmm1000 — —

FMOV @Rm+,XDn (Rm) → XDn, Rm + 8 → Rm 1111nnn1mmmm1001 — —

FMOV @(R0,Rm),XDn (R0 + Rm) → XDn 1111nnn1mmmm0110 — —

FMOV XDm,@Rn XDm → (Rn) 1111nnnnmmm11010 — —

FMOV XDm,@-Rn Rn – 8 → Rn, XDm → (Rn) 1111nnnnmmm11011 — —

FMOV XDm,@(R0,Rn) XDm → (R0+Rn) 1111nnnnmmm10111 — —

FIPR FVm,FVn inner_product [FVm, FVn]
→ FR[n+3]

1111nnmm11101101 — —

FTRV XMTRX,FVn transform_vector [XMTRX,
FVn] → FVn

1111nn0111111101 — —

FRCHG ~FPSCR.FR → SPFCR.FR 1111101111111101 — —

FSCHG ~FPSCR.SZ → SPFCR.SZ 1111001111111101 — —

Table 47: Floating-point graphics acceleration instructions

PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

8Instruction
specification
8.1 Overview

The behavior of instructions is specified using a simple notational language to
describe the effects of each instruction on the architectural state of the machine.

The language consists of the following features:

• A simple variable and type system.

• Expressions.

• Statements.

• Notation for the architectural state of the machine.

• An abstract sequential model of instruction execution.

These features are described in the following sections. Additional mechanisms are
defined to model memory, synchronization instructions, cache instructions and
floating-point. The final section gives example instruction specifications.

Each instruction is described using informal text as well as the formal notational
language. Sometimes it is inappropriate for one of these descriptions to convey the
full semantics. In such cases these two descriptions must be taken together to
constitute the full specification.

184 Variables and types
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

8.2 Variables and types
Variables are used to hold state. The type of a variable determines the set of values
that the variable can take and the available operators to manipulate that variable.
The supported scalar types are integers, booleans and bit-fields. One-dimensional
arrays of the scalar types are also supported.

The architectural state of the machine is represented by a set of variables. Each of
these variables has an associated type, which is either a bit-field or an array of
bit-fields. Bit-fields are used to give a bit-accurate representation.

Additional variables are used to hold temporary values. The type of temporary
variables is implicit, and determined by their context rather than explicit
declaration. The type of a temporary variable is an integer, a boolean or an array of
these.

8.2.1 Integer

An integer variable can take the value of any mathematical integer. No limits are
imposed on the range of integers supported. Integers obey their standard
mathematical properties. Integer operations do not overflow. The integer operators
are defined so that singularities do not occur. For example, no definition is given to
the result of divide by zero; the operator is simply not available when the divisor is
zero.

The representation of literal integer values is achieved using the following
notations:

• Decimal numbers are represented by the regular expression: {0-9}+

• Hexadecimal numbers are represented by the regular expression: 0x{0-9a-fA-F}+

• Binary numbers are represented by the regular expression: 0b{0-1}+

These notations are standard and map onto integer values in the obvious way.
Underscore characters (‘_’) can be inserted into any of the above literal
representations. These do not change the represented value but can be used as
spacers to aid readability.

The notations allow only zero and positive numbers to be represented directly. A
monadic integer negation operator can subsequently be used to derive a negative
value.

Variables and types 185
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

8.2.2 Boolean

A boolean variable can take two values:

• Boolean false. The literal representation of boolean false is ‘FALSE’.

• Boolean true. The literal representation of boolean true is ‘TRUE’.

8.2.3 Bit-fields

Bit-fields are provided to define ‘bit-accurate’ storage.

Bit-fields containing arbitrary numbers of bits are supported. A bit-field of b bits
contains bits numbered from 0 (the least significant bit) up to b-1 (the most
significant bit). Each bit can take the value 0 or the value 1. Bit-fields are mapped
to, and from, integers in the usual way. If bit i of a b-bit, bit-field, where i is in [0, b),
is set then it contributes 2i to the integral value of the bit-field. The integral value of
the bit-field as a whole is an integer in the range [0, 2b).

When a bit-field is read, it gives its integral value. When a bit-field is written with
an integral value, the integer must be in the range of values supported by the
bit-field. Typically, the only operations applied directly to bit-fields are conversions
to other types.

8.2.4 Arrays

One-dimensional arrays of the above types are also available. Indexing into an
n-element array A is achieved using the notation A[i] where A is an array of some
type and i is an integer in the range [0, n). This selects the ith. element of the array
A. If i is zero this selects the first entry, and if i is n-1 then this selects the last entry.
The type of the selected element is the base type of the array.

Multi-dimensional arrays are not provided.

186 Expressions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

8.2.5 Floating point values

Floating-point types and operators are not provided. Instead, the value in a
floating-point register is represented as a bit-field. The organization of the bit-field
is consistent with an IEEE754 format.

When a floating-point register is read, an integral representation of that bit-pattern
is returned. When an integral value is written into a floating-point register, the
value written is the bit-pattern of that integer. Thus, reading and writing is
achieved as bit-pattern transfers, and not by interpreting the bit-patterns as real
numbers.

The language does not provide direct means to interpret these bit-patterns as real
numbers. Instead, functions are provided which give the required functionality. For
example, arithmetic on real numbers is represented using a function notation.

8.3 Expressions
Expressions are constructed from monadic operators, dyadic operators and
functions applied to variable and literal values.

There are no defined precedence and associativity rules for the operators.
Parentheses are used to specify the expression unambiguously.

Sub-expressions can be evaluated in any order. If a particular evaluation order is
required, then sub-expressions must be split into separate statements.

8.3.1 Integer arithmetic operators

Since the notation uses straightforward mathematical integers, the set of standard
mathematical operators is available and already defined.

The standard dyadic operators are listed in Table 48.

Operation Description

i + j Integer addition

i - j Integer subtraction

i × j Integer multiplication

Table 48: Standard dyadic operators

Expressions 187
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

The standard monadic operators are described in Table 49.

The division operator truncates towards zero. The remainder operator is consistent
with this. The sign of the result of the remainder operator follows the sign of the
dividend. Division or remainder with a divisor of zero results in a singularity, and
its behavior is not defined.

For a numerator (n) and a denominator (d), the following properties hold where d≠0:

i / j Integer division

i \ j Integer remainder

Operator Description

- i Integer negation

|i| Integer modulus

Table 49: Standard monadic operators

Operation Description

Table 48: Standard dyadic operators

n d n d⁄()× n\d()+=

n–() d⁄ n d⁄()– n d–()⁄= =

n–()\d n\d()–=

n\ d–() n\d=

0 n\d() d<≤ where n 0≥ and d 0>

188 Expressions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

8.3.2 Integer shift operators

The available integer shift operators are listed in Table 50.

The shift operators are defined on integers as follows where b ≥ 0:

Note that right shifting rounds the result towards minus infinity. This contrasts
with division, which rounds towards zero, and is the reason why the right shift
definition is separate for positive and negative n.

8.3.3 Integer bitwise operators

The available integer bitwise operators are listed in Table 51.

Operation Description

n << b Integer left shift

n >> b Integer right shift

Table 50: Shift operators

n b« n 2
b×=

n b»
n 2

b⁄ where n 0≥

n 2
b

1+–() 2
b⁄ where n 0<




=

Operation Description

i ∧ j Integer bitwise AND

i ∨ j Integer bitwise OR

i ⊕ j Integer bitwise XOR

~ i Integer bitwise NOT

n<b FOR m> Integer bit-field extraction: extract m bits starting at bit b from integer n

n Integer bit-field extraction: extract 1 bit starting at bit b from integer n

Table 51: Bitwise operators

Expressions 189
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

In order to define bitwise operations all integers are considered as having an
infinitely long two’s complement representation. Bit 0 is the least significant bit of
this representation, bit 1 is the next higher bit, and so on. The value of bit b, where
b ≥ 0, in integer n is given by:

Care must be taken whenever the infinitely long two’s complement representation
of a negative number is constructed. This representation will contain an infinite
number of higher bits with the value 1 representing the sign. Typically, a
subsequent conversion operation is used to discard these upper bits and return the
result back to a finite value.

Bitwise AND (∧), OR (∨), XOR (⊕) and NOT (∼) are defined on integers as follows,
where b takes all values such that b ≥ 0:

Note: Bitwise NOT of any finite positive i will result in a value containing an infinite
number of higher bits with the value 1 representing the sign.

Bitwise extraction is defined on integers as follows, where b ≥ 0 and m > 0:

The result of n<b FOR m> is an integer in the range [0, 2m).

BIT n b,() n 2⁄ b()\2 where n 0≥=

BIT n– b,() 1 BIT n 1– b,()– where n 0>=

BIT i j∧ b,() BIT i b,() BIT j b,()×=

BIT i j∨ b,() BIT i j∧ b,() BIT i j⊕ b,()+=

BIT i j⊕ b,() BIT i b,() BIT j b,()+()\2=

BIT ~i b,() 1 BIT i b,()–=

n b FOR m〈 〉 n b»() 2
m

1–()∧=

n b〈 〉 n b FOR 1〈 〉=

190 Expressions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

8.3.4 Relational operators

Relational operators are defined to compare integral values and give a boolean
result.

8.3.5 Boolean operators

Boolean operators are defined to perform logical AND, OR, XOR and NOT. These
operators have boolean sources and result. Additionally, the conversion operator
INT is defined to convert a boolean source into an integer result.

Operation Description

i = j Result is true if i is equal to j, otherwise false

i ≠ j Result is true if i is not equal to j, otherwise false

i < j Result is true if i is less than j, otherwise false

i > j Result is true if i is greater than j, otherwise false

i ≤ j Result is true if i is less than or equal to j, otherwise false

i ≥ j Result is true if i is greater than or equal to j, otherwise false

Table 52: Relational operators

Operation Description

i AND j Result is true if i and j are both true, otherwise false

i OR j Result is true if either/both i and j are true, otherwise false

i XOR j Result is true if exactly one of i and j are true, otherwise false

NOT i Result is true if i is false, otherwise false

INT i Result is 0 if i is false, otherwise 1

Table 53: Boolean operators

Expressions 191
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

8.3.6 Single-value functions

In some cases it is inconvenient or inappropriate to describe an expression directly
in the specification language. In these cases a function call is used to reference the
undescribed behavior.

A single-value function evaluates to a single value (the result), which can be used in
an expression. The type of the result value can be determined by the expression
context from which the function is called. There are also multiple-value functions
which evaluate to multiple values. These are only available in an assignment
context, and are described in Section 8.4.2: Assignment on page 194.

Functions can contain side-effects.

Scalar conversions

Two monadic functions are defined to support conversions between integral
representations of finite-precision signed and unsigned number spaces. These
functions are often used to convert between bit-fields and integer values.

These two functions are defined as follows, where n > 0:

Function Description

ZeroExtendn(i) Convert integer i to an n-bit 2’s complement unsigned range

SignExtendn(i) Convert integer i to an n-bit 2’s complement signed range

Table 54: Integer conversion operators

ZeroExtendn i() i 0 FOR n〈 〉=

SignExtendn i()
i 0 FOR n〈 〉 where i n 1–〈 〉 0=

i 0 FOR n 1–()〈 〉 2
n

– where i n 1–〈 〉 1=



=

192 Expressions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

For syntactic convenience, conversion functions are also defined for converting an
integer to a single bit and to a 32-bit register. Table 55 shows the additional
functions provided.

Floating-point conversions

The specification language manipulates floating-point values as integers containing
the associated IEEE754 bit-pattern. The layout of these bit-patterns is described in
Chapter 6: Floating-point unit on page 149. The language does not support a
floating-point type.

Conversion functions are defined to support floating-point. Floating-point values
are held as either scalar values in a single register, or vector values in multiple
registers. The available register formats are:

• One 32-bit value in a single-precision register.

• One 64-bit value in a double-precision register.

• Two 32-bit values in a pair of single-precision registers.

• Four 32-bit values in a four-entry vector of single-precision registers.

• Sixteen 32-bit values in a four-by-four matrix of single-precision registers.

Conversions are available to convert between register bit-fields in these formats and
integers or arrays of integers holding the appropriate IEEE754 bit-patterns.

Operation Description

Bit(i) Convert lowest bit of integer i to a 1-bit value

This is a convenient notation for i<0>

Register(i) Convert lowest 32 bits of integer i to a 32-bit value

This is a convenient notation for i<0 FOR 32>

Table 55: Conversion operators from integers to bit-fields

Expressions 193
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

The following conversions are provided to convert from floating-point registers:

The following conversions are provided to convert to floating-point registers:

Operation Description

FloatValue32(r) Convert a single-precision floating-point register into a 32-bit integer
bit-pattern.

FloatValue64(r) Convert a double-precision floating-point register into a 64-bit integer
bit-pattern.

FloatValuePair32(r) Convert a pair of single-precision floating-point registers into an array
of 2 x 32-bit integer bit-patterns.

FloatValueVector32(r) Convert a 4-entry vector of single-precision floating-point registers
into an array of 4 x 32-bit integer bit-patterns.

FloatValueMatrix32(r) Convert a 16-entry matrix of single-precision floating-point registers
into an array of 16 x 32-bit integer bit-patterns.

Table 56: Conversion from floating-point register formats

Operation Description

FloatRegister32(i) Convert a 32-bit integer bit-pattern into a single-precision
floating-point register.

FloatRegister64(i) Convert a 64-bit integer bit-pattern into a double-precision
floating-point register.

FloatRegisterPair32(a) Convert an array of 2 x 32-bit integer bit-patterns into a pair of
single-precision floating-point registers.

FloatRegisterVector32(a) Convert an array of 4 x 32-bit integer bit-patterns into a 4-entry
vector of single-precision floating-point registers.

FloatRegisterMatrix32(a) Convert an array of 16 x 32-bit integer bit-patterns into a
16-entry matrix of single-precision floating-point registers.

Table 57: Conversion to floating-point register formats

194 Statements
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

8.4 Statements
An instruction specification consists of a sequence of statements. These statements
are processed sequentially in order to specify the effect of the instruction on the
architectural state of the machine. The available statements are discussed in this
section.

Each statement has a semi-colon terminator. A sequence of statements can be
aggregated into a statement block using ‘{’ to introduce the block and ‘}’ to terminate
the block. A statement block can be used anywhere that a statement can.

8.4.1 Undefined behavior

The statement:

UNDEFINED();

indicates that the resultant behavior is architecturally undefined.

A particular implementation can choose to specify an implementation-defined
behavior in such cases. It is very likely that any implementation-defined behavior
will vary from implementation to implementation. Exploitation of
implementation-defined behavior should be avoided to allow software to be portable
between implementations.

In cases where architecturally undefined behavior can occur in user mode, the
implementation will ensure that implemented behavior does not break the
protection model. Thus, the implemented behavior will be some execution flow that
is permitted for that user mode thread.

8.4.2 Assignment

The ‘←’ operator is used to denote assignment of an expression to a variable. An
example assignment statement is:

variable ← expression;

The expression can be constructed from variables, literals, operators and functions
as described in Section 8.3: Expressions on page 186. The expression is fully
evaluated before the assignment takes place. The variable can be an integer, a
boolean, a bit-field or an array of one of these types.

Statements 195
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Assignment to architectural state

This is where the variable is part of the architectural state (as described in
Table 58: Scalar architectural state on page 198). The type of the expression and the
type of the variable must match.

Assignment to a temporary

Alternatively, if the variable is not part of the architectural state, then it is a
temporary variable. The type of the variable is determined by the type of expression.
A temporary variable must be assigned to, before it is used in the instruction
specification.

Assignment of an undefined value

An assignment of the following form results in a variable being initialized with an
architecturally undefined value:

variable ← UNDEFINED;

After assignment the variable will hold a value which is valid for its type. However,
the value is architecturally undefined. The actual value can be unpredictable; that
is to say the value indicated by UNDEFINED can vary with each use of
UNDEFINED. Architecturally-undefined values can occur in both user and
privileged modes.

A particular implementation can choose to specify an implementation-defined value
in such cases. It is very likely that any implementation-defined values will vary
from implementation to implementation. Exploitation of implementation-defined
values should be avoided to allow software to be portable between implementations.

Assignment of multiple values

Multi-value functions are used to return multiple values, and are only available
when used in a multiple assignment context. The syntax consists of a list of
comma-separated variables, an assignment symbol followed by a function call. The
function is evaluated and returns multiple results into the variables listed. The
number of variables and the number of results of the function must match. The
assigned variables must all be distinct (i.e. no aliases).

For example, a two-valued assignment from a function call with 3 parameters can be
represented as:

variable1, variable2 ← call(param1, param2, param3);

196 Statements
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

8.4.3 Conditional

Conditional behavior is specified using ‘IF’, ‘ELSE IF’ and ‘ELSE’.

Conditions are expressions that result in a boolean value. If the condition after an
‘IF’ is true, then its block of statements is executed and the whole conditional then
completes. If the condition is false, then any ‘ELSE IF’ clauses are processed, in
turn, in the same fashion. If no conditions are met and there is an ‘ELSE’ clause
then its block of statements is executed. Finally, if no conditions are met and there is
no ‘ELSE’ clause, then the statement has no effect apart from the evaluation of the
condition expressions.

The ‘ELSE IF’ and ‘ELSE’ clauses are optional. In ambiguous cases, the ‘ELSE’
matches with the nearest ‘IF’.

For example:

IF (condition1)
block1

ELSE IF (condition2)
block2

ELSE
block3

8.4.4 Repetition

Repetitive behavior is specified using the following construct:

REPEAT i FROM m FOR n STEP s block

The block of statements is iterated n times, with the integer i taking the values:

m, m + s, m + 2s, m + 3s, up to m + (n - 1) × s.

The behavior is equivalent to textually writing the block n times with i being
substituted with the appropriate value in each copy of the block.

The value of n must be greater or equal to 0, and the value of s must be non-zero.
The values of the expressions for m, n and s must be constant across the iteration.
The integer i must not be assigned to within the iterated block. The ‘STEP s’ can be
omitted in which case the step-size takes the default value of 1.

Statements 197
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

8.4.5 Exceptions

Exception handling is triggered by a THROW statement. When an exception is
thrown, no further statements are executed from the instruction specification and
control passes to an exception handler. The actions associated with the launch of the
handler are not shown in the instruction specification, but are described separately
in Chapter 5: Exceptions on page 109.

There are two forms of throw statement:

THROW type;

and:

THROW type, value;

where type indicates the type of exception which is launched, and value is an
optional argument to the exception handling sequence.

The full set of exceptions is described in Chapter 5: Exceptions on page 109.

8.4.6 Procedures

Procedure statements contain a procedure name followed by a list of
comma-separated arguments contained within parentheses followed by a
semi-colon. The execution of procedures typically causes side-effects to the
architectural state of the machine.

Procedures are generally used where it is difficult or inappropriate to specify the
effect of an instruction using the abstract execution model. A fuller description of
the effect of the instruction will be given in the surrounding text.

An example procedure with two parameters is:

proc(param1, param2);

198 Architectural state
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

8.5 Architectural state
The architectural state is described in Chapter 2: Programming model on page 23.
The notations used in the model to refer to this state are summarized in Table 58
and Table 59. Each item of scalar architectural state is a bit-field of a particular
width. Each item of array architectural state is an array of bit-fields of a particular
width.

Architectural state
Type is a bit-field
containing:

Description

MD (SR.MD) 1 bit User (0) or privileged (1) mode

PC 32 bits 32-bit program counter

MMUCR 32 bits For details of the MMU control register see
Chapter 3: Memory management unit (MMU)
on page 45.

FPSCR 32 bits 32-bit floating-point status and control
register

GBR 32 bits Global base register

MACL 32 bits Multiply-accumulate low

MACH 32 bits Multiply-accumulate high

PR 32 bits Procedure link register

T 1 bit Condition code flag

S 1 bit Multiply-accumulate saturation flag

M 1 bit Divide-step M flag

Q 1 bit Divide-step Q flag

FPUL 32 bits FPU communication register

Ri where i is in [0, 15] 32 bits 16 x 32-bit general purpose registers

FRi where i is in [0, 31] 32 bits 32 x 32-bit floating-point registers

DR2i where i is in [0,
15]

64 bits 16 x 64-bit floating-point registers

Table 58: Scalar architectural state

Architectural state 199
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Note: FR, FP, FV, MTRX and DR provide different views of the same architectural state.

There is no implicit meaning to the value held by the collection of bits in a register.
The interpretation of the register is supplied by each instruction that reads or
writes the register value.

PC denotes the program counter of the currently executing instruction. PC’ denotes
the program counter of the next instruction that is to be executed.

Architectural state
Type is an array of bit-
fields each containing:

Description

FP2i where i is in [0, 31] 32 bits 32 pairs of 32-bit floating-point registers

FV4i where i is in [0, 15] 32 bits 16 vectors of 4 x 32-bit floating-point registers

MTRX16i where i is in [0, 3] 32 bits 4 matrices of 16 x 32-bit floating-point
registers

MEM[i] where i is in [0, 232) 8 bits 232 bytes of memory

UTLB[i] where i is in [0,63] a UTLB entry Used for translation, for further details see
Chapter 3: Memory management unit (MMU)
on page 45.

Table 59: Array architectural state

200 Memory model
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

8.6 Memory model
Instruction specification uses a simple model of memory. It assumes, for example,
that any caches have no architectural visibility. For typical well-disciplined
instruction sequences these effects will not be architecturally visible. However, a
fuller description of the behavior in other cases is defined by the text of the
architecture manual.

MEM is an array of bytes indexed by an effective address. Elements in arrays are
selected using array indexing notation: MEM[i] selects the ith. entry in the MEM
array. The total range of array indices into MEM is [0, 232), though not all of this
memory is available on all implementations.

Array slicing can be used to view an array as consisting of elements of a larger size.
The notation MEM[s FOR n], where n > 0, denotes a memory slice containing the
elements MEM[s], MEM[s+1] through to MEM[s+n-1]. The type of this slice is a
bit-field exactly large enough to contain a concatenation of the n selected elements.
In this case it contain 8n bits since the base type of MEM is byte.

The order of the concatenation depends on the endianness of the processor:

• If the processor is operating in a little-endian mode, the concatenation order
obeys the following condition as i (the byte number) varies in the range [0, n):

This equivalence states that byte number i, using little-endian byte numbering
(i.e. byte 0 is bits 0 to 7), in the bit-field MEM[s FOR n] is the ith. byte in memory
counting upwards from MEM[s].

• If the processor is operating in a big-endian mode, the concatenation order obeys
the following condition as i (the byte number) varies in the range [0, n):

This equivalence states that byte number i, using big-endian byte numbering
(i.e. byte 0 is bits 8n-8 to 8n-1), in the bit-field MEM[s FOR n] is the ith. byte in
memory counting upwards from MEM[s].

For syntactic convenience, functions and procedures are provided to read, write and
swap memory. The basic primitives support aligned accesses. Misaligned read and
write primitives support the instructions for misaligned load and store.

MEM s FOR n[]() 8i FOR 8〈 〉 MEM s i+[]=

MEM s FOR n[]() 8 n 1– i–() FOR 8〈 〉 MEM s i+[]=

Memory model 201
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Additionally, mechanisms are provided for reading and writing pairs of values. Pair
access requires that each half of the pair is endianness converted separately, and
that the lower half is written into memory at the provided address while the upper
half is written into that address plus the object size. This maintains the ordering of
the halves of the pair as they are transferred between registers and memory. Pair
access is used only for loading and storing pairs of single-precision floating-point
registers (see Chapter 6: Floating-point unit on page 149).

8.6.1 Support functions

The specification of the memory instructions relies on the support functions listed in
Table 60. These functions are used to model the behavior of the memory
management unit described in Chapter 3: Memory management unit (MMU) on
page 45.

Function Description

AddressUnavailable(address) Returns true if the provided address is outside of the
available part of the effective address space. For further
details refer to Chapter 3: Memory management unit
(MMU) on page 45.

MMU() Returns true if the MMU is enabled.

DataAccessMiss(address) Returns true if the provided address does not have a
mapping for a data access.

InstFetchMiss(address) Returns true if the provided address does not have a
mapping for an instruction fetch.

InstInvalidateMiss(address) Returns true if the provided address does not have a
mapping for an instruction invalidation.

ReadProhibited(address) Returns true if the provided address has no read permission
for the current privilege.

WriteProhibited(address) Returns true if the provided address has no write permission
for the current privilege.

ExecuteProhibited(address) Returns true if the provided address has no execute
permission for the current privilege.

Table 60: Support functions for memory access

202 Memory model
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

More detailed properties of translation miss detection are not modelled here. The
conditions that determine whether an access is a translation miss or a hit depend on
the MMU and cache.

DataAccessMiss is used to check for the absence of a data translation. This function
is used for all data accesses when the MMU is enabled. InstFetchMiss is used to
check for instruction fetches.

8.6.2 Reading memory

Functions are provided to read memory.

The ReadMemoryn function takes an integer parameter to indicate the address
being accessed. The number of bits being read (n) is one of 8, 16 or 32 bits. The
required bytes are read from memory, interpreted according to endianness, and an
integer result returns the read bit-field value. If the read memory value is to be
interpreted as signed, then a sign-extension should be used on the result.

DirtyBit(address) Returns the value of the dirty bit (D) in the UTLB for the
translation used for the specified address.

IsLittleEndian() Returns true if processor is little-endian.

Function Description

Table 60: Support functions for memory access

Function Description

ReadMemoryn(address) Aligned memory read of an n-bit value

ReadMemoryPairn(address) Aligned memory read of a pair of n-bit values

Table 61: Support functions to read memory

Memory model 203
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

The assignment:

result ← ReadMemoryn(a);

is equivalent to:

width ← n >> 3;
IF (AddressUnavailable(a) OR ((a∧ (width-1)) ≠ 0)) THROW
RADDERR,a;
IF (MMU() AND DataAccessMiss(a)) THROW RTLBMISS,a;
IF (MMU() AND ReadProhibited(a)) THROW READPROT,a;
result ← MEM[a FOR width];

ReadMemoryPairn reads a pair of n-bit values. The alignment check requires
alignment for a 2n-bit access. The access maintains the ordering of the two halves of
the pair, with endianness applied separately to each half. The assignment:

result ← ReadMemoryPairn(a);

is equivalent to:

width ← n >> 3;
pairwidth ← n << 1;
IF (AddressUnavailable(a) OR ((a∧ (pairwidth-1)) ≠ 0)) THROW
RADDERR,a;
IF (MMU() AND DataAccessMiss(a)) THROW RTLBMISS,a;
IF (MMU() AND ReadProhibited(a)) THROW READPROT,a;
low ← MEM[a FOR width];
high ← MEM[a+width FOR width];
result ← low + (high << n);

204 Memory model
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

8.6.3 Prefetching memory

A function is provided to denote memory prefetch.

This is used for a software-directed data prefetch from a specified effective address.
This is a hint to give advance notice that particular data will be required. It is
implementation-specific as to whether a prefetch will be performed.

The statement:

result ← PrefetchMemory(a);

is equivalent to:

IF (NOT AddressUnavailable(address))
IF (NOT (MMU() AND DataAccessMiss(address)))
IF (NOT (MMU() AND ReadProhibited(address)))
PREF(address);

result ← 0;

where PREF is a cache operation defined in Section 8.7: Cache model on page 206.
This function does not raise exceptions. PrefetchMemory evaluates to zero for
syntactic convenience.

8.6.4 Writing memory

Procedures are provided to write memory.

The WriteMemoryn procedure takes an integer parameter to indicate the address
being accessed, followed by an integer parameter containing the value to be written.

Function Description

PrefetchMemory(address) Memory prefetch

Table 62: Support procedure to prefetch memory

Function Description

WriteMemoryn(address, value) Aligned memory write to an n-bit value

WriteMemoryPairn(address, value) Aligned memory write to a pair of n-bit values

Table 63: Support procedures to write memory

Memory model 205
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

The number of bits being written (n) is one of 8, 16 or 32 bits. The written value is
interpreted as a bit-field of the required size; all higher bits of the value are
discarded. The bytes are written to memory, ordered according to endianness. The
statement:

WriteMemoryn(a, value);

is equivalent to:

width ← n >> 3;
IF (AddressUnavailable(a) OR ((a∧ (width-1)) ≠ 0)) THROW
WADDERR,a;
IF (MMU() AND DataAccessMiss(a)) THROW WTLBMISS,a;
IF (MMU() AND WriteProhibited(a)) THROW WRITEPROT,a;
IF (MMU() AND NOT DirtyBit(a)) THROW FIRSTWRITE,a;
MEM[a FOR width] ← value<0 FOR n>;

WriteMemoryPairn writes a pair of n-bit values. The alignment check requires
alignment for a 2n-bit access. The access maintains the ordering of the two halves of
the pair, with endianness applied separately to each half. The statement:

WriteMemoryPairn(a, value);

is equivalent to:

width ← n >> 3;
pairwidth ← n << 1;
IF (AddressUnavailable(a) OR ((a∧ (pairwidth-1)) ≠ 0)
) THROW WADDERR,a;
IF (MMU() AND DataAccessMiss(a)) THROW WTLBMISS,a;
IF (MMU() AND WriteProhibited(a)) THROW WRITEPROT,a;
IF (MMU() AND NOT DirtyBit(a)) THROW FIRSTWRITE,a;
MEM[a FOR width] ← value<0 FOR n>;

MEM[a+width FOR width] ← value<n FOR n>;

Sleep operations

The SLEEP operation is used to enter sleep mode. The effects of this operation is
beyond the scope of the specification language, and it is therefore modelled using

206 Cache model
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

procedure calls. The behavior of these procedure calls is elaborated in the text of the
manual.

8.7 Cache model
Cache operations are used to allocate, prefetch and cohere lines in caches. The
effects of these operations are beyond the scope of the specification language, and
are therefore modelled using procedure calls. The behavior of these procedure calls
is elaborated in the text of the manual.

8.8 Floating-point model
The floating-point specification is abstracted using functions to hide the low-level
details. Additional information is provided in a tabular form to describe special and
exceptional cases. Chapter 6: Floating-point unit on page 149 provides a textual
description of floating-point operation.

8.8.1 Functions to access SR and FPSCR

The floating-point instruction specifications use a function notation to access SR
and FPSCR state. The used functions are described in Table 66.

Procedure Description

SLEEP() Procedure to enter sleep mode

Table 64: Procedures to model sleep operation

Procedure Description

ALLOCO(address) Procedure to allocate an operand cache block.

OCBI(address) Procedure to invalidate an operand cache block.

OCBP(address) Procedure to purge an operand cache block.

OCBWB(address) Procedure to write-back an operand cache block.

PREF (address) Procedure to prefetch an operand cache block.

Table 65: Procedures to model cache operations

Floating-point model 207
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Function Description

FpuIsDisabled(SR) True if SR.FD is 1, otherwise false

FpuFlagI(FPSCR) True if FPSCR.FLAG.I (sticky flag for inexact) is 1, otherwise false

FpuFlagU(FPSCR) True if FPSCR.FLAG.U (sticky flag for underflow) is 1, otherwise false

FpuFlagO(FPSCR) True if FPSCR.FLAG.O (sticky flag for overflow) is 1, otherwise false

FpuFlagZ(FPSCR) True if FPSCR.FLAG.Z (sticky flag for divide by zero) is 1, otherwise false

FpuFlagV(FPSCR) True if FPSCR.FLAG.V (sticky flag for invalid) is 1, otherwise false

FpuCauseI(FPSCR) True if FPSCR.CAUSE.I (cause flag for inexact) is 1, otherwise false

FpuCauseU(FPSCR) True if FPSCR.CAUSE.U (cause flag for underflow) is 1, otherwise false

FpuCauseO(FPSCR) True if FPSCR.CAUSE.O (cause flag for overflow) is 1, otherwise false

FpuCauseZ(FPSCR) True if FPSCR.CAUSE.Z (cause flag for divide by zero) is 1, otherwise false

FpuCauseV(FPSCR) True if FPSCR.CAUSE.V (cause flag for invalid) is 1, otherwise false

FpuCauseE(FPSCR) True if FPSCR.CAUSE.E (cause flag for FPU error) is 1, otherwise false

FpuEnableI(FPSCR) True if FPSCR.ENABLE.I (exception enable for inexact) is 1, otherwise false

FpuEnableU(FPSCR) True if FPSCR.ENABLE.U (exception enable for underflow) is 1, otherwise false

FpuEnableO(FPSCR) True if FPSCR.ENABLE.O (exception enable for overflow) is 1, otherwise false

FpuEnableZ(FPSCR) True if FPSCR.ENABLE.Z (exception enable for divide by zero) is 1, otherwise
false

FpuEnableV(FPSCR) True if FPSCR.ENABLE.V (exception enable for invalid) is 1, otherwise false

Table 66: SR and FPSCR access

208 Floating-point model
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

8.8.2 Functions to model floating-point behavior

Functions are used to model almost all of the floating-point behavior. Each function
is associated with a list of results and a list of parameters. The functions
encapsulate the computation associated with the instruction. This includes
handling of input denormalized values, special case detection, exceptional cases and
the floating-point arithmetic.

The following tables summarize the functions used by each instruction. The table
shows how the parameters are interpreted and how the results are computed. The
nth. parameter is denoted as Pn and the nth. result as RESn.

The parameters and results of these functions are all modeled as integer values. For
floating-point parameters and results, these values are integer bit-patterns
representing the IEEE754 formats. Multi-value results are used to return two
results: the computed result and a new value for FPSCR. If the new value of FPSCR
causes an exception to be raised, then the destination register will not be updated
with the computed result.

Instruction Function RES0 RES1 P0, P1 P2

FADD.S FADD_S Single result of (P0 +IEEE754 P1) New FPSCR Single Old FPSCR

FADD.D FADD_D Double result of (P0 +IEEE754 P1) New FPSCR Double Old FPSCR

FSUB.S FSUB_S Single result of (P0 -IEEE754 P1) New FPSCR Single Old FPSCR

FSUB.D FSUB_D Double result of (P0 -IEEE754 P1) New FPSCR Double Old FPSCR

FMUL.S FMUL_S Single result of (P0 ×IEEE754 P1) New FPSCR Single Old FPSCR

FMUL.D FMUL_D Double result of (P0 ×IEEE754 P1) New FPSCR Double Old FPSCR

FDIV.S FDIV_S Single result of (P0 /IEEE754 P1) New FPSCR Single Old FPSCR

FDIV.D FDIV_D Double result of (P0 /IEEE754 P1) New FPSCR Double Old FPSCR

Table 67: Floating-point dyadic arithmetic

Instruction Function RES0 RES1 P0 P1

FABS.S FABS_S Single result of absolute P0 (not used) Single Old FPSCR

FABS.D FABS_D Double result of absolute P0 (not used) Double Old FPSCR

Table 68: Floating-point monadic arithmetic

Floating-point model 209
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FNEG.S FNEG_S Single result of negating P0 (not used) Single Old FPSCR

FNEG.D FNEG_D Double result of negating of P0 (not used) Double Old FPSCR

FSQRT.S FSQRT_S Single result of IEEE754√P0 New FPSCR Single Old FPSCR

FSQRT.D FSQRT_D Double result of IEEE754√P0 New FPSCR Double Old FPSCR

Instruction Function RES0 RES1 P0, P1 P2

FCMPEQ.S FCMPEQ_S Boolean result of (P0 =IEEE754 P1) New FPSCR Single Old FPSCR

FCMPEQ.D FCMPEQ_D Boolean result of (P0 =IEEE754 P1) New FPSCR Double Old FPSCR

FCMPGT.S FCMPGT_S Boolean result of (P0 >IEEE754 P1) New FPSCR Single Old FPSCR

FCMPGT.D FCMPGT_D Boolean result of (P0 >IEEE754 P1) New FPSCR Double Old FPSCR

Table 69: Floating-point comparisons

Instruction Function RES0 RES1 P0 P1

FCNV.SD FCNV_SD P0 is converted to double result New FPSCR Single Old FPSCR

FCNV.DS FCNV_DS P0 is converted to single result New FPSCR Double Old FPSCR

FTRC.SL FTRC_SL P0 is converted to signed 32-bit
integer result

New FPSCR Single Old FPSCR

FTRC.DL FTRC_DL P0 is converted to signed 32-bit
integer result

New FPSCR Double Old FPSCR

FLOAT.LS FLOAT_LS P0 is converted to single result New FPSCR 32-bit int Old FPSCR

FLOAT.LD FLOAT_LD P0 is converted to double result New FPSCR 32-bit int Old FPSCR

Table 70: Floating-point conversions

Instruction Function RES0 RES1 P0, P1, P2 P3

FMAC.S FMAC_S Single result of fused (P0 × P1) + P2 New FPSCR Single Old FPSCR

Table 71: Floating-point multiply-accumulate

Instruction Function RES0 RES1 P0 P1

Table 68: Floating-point monadic arithmetic

210 Abstract sequential model
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

8.8.3 Floating-point special cases and exceptions

A special-case table is provided for each floating-point instruction that is considered
an operation and has at least one input that is interpreted as a floating-point value.
This table enumerates all different possible combinations of input values and the
results returned by the instruction in the absence of an exception being raised.

The entries in the table are IEEE754 floating-point values as described in Chapter 6:
Floating-point unit on page 149. Each cell entry in the table describes the result
returned for a particular combination of floating-point inputs. If the result is
invariant, its value is given in the cell. If the result is variable, the name of the
appropriate operation is entered in the cell. If the cell contains ‘n/a’ then this
indicates that an exception is always raised for that combination of inputs and that
the implementation does not associate any value with the result.

8.9 Abstract sequential model
This section describes the abstract sequential model that is used to specify how
instructions are executed on the SH4. It is described in terms of transitions in the
explicit architectural state of the device plus some hidden internal state held in PC”
and PR” which are used to keep track of delayed state changes.

Section 8.9.1 describes the initial values taken by the internal state.

Section 8.9.2 describes the steps taken to execute each SHcompact instruction in
the abstract sequential model. Section describes the mechanisms used to model
delayed branching.

Instruction Function RES0 RES1 P0 P1 P2

FIPR.S FIPR_S Single result of inner product
of P0 with P1

New FPSCR Array of 4
singles

Array of
4 singles

Old
FPSCR

FTRV.S FTRV_S Array of 4 single results of
matrix transform of P0 with P1

New FPSCR Array of
16 singles

Array of
4 singles

Old
FPSCR

Table 72: Special-purpose floating-point dyadic arithmetic

Abstract sequential model 211
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

8.9.1 Initial conditions

The hidden internal state used to keep track of delayed state changes are
automatically set to appropriate initial conditions at the beginning of a sequence of
instructions.

The initial state is set as follows:

• PC” is set to PC+2

• PR” is set to the same value as PR

8.9.2 Instruction execution loop

The steps associated with executing each instruction are:

1 Check for asynchronous events, such as interrupt or reset, and initiate handling
if required. Asynchronous events are not accepted between a delayed branch and
a delay slot. They are delayed until after the delay slot.

2 Check the current program counter (PC) for instruction address exceptions, and
initiate handling if required.

3 Fetch the instruction bytes from the address in memory, as indicated by the
current program counter, 2 bytes need to be fetched for each instruction.

4 Calculate the default values of PC’ and PR’. PC’ is set to the value of PC”, PR’ is
set to the value of PR”.

5 Calculate the default values of PC” and PR” assuming continued sequential
execution without procedure call or mode switch: PC” is PC’+2, while PR” is
unchanged.

6 Decode and execute the instruction. This includes checks for synchronous events,
such as exceptions and panics, and initiation of handling if required.
Synchronous events are not accepted between a delayed branch and a delay slot.
They are detected either before the delayed branch or after the delay slot.

The execution of an instruction can update the PC and PR state as follows:

• The instruction can change PC’ to achieve a branch after this instruction has
completed. It must also update PC” to the value of PC’+2 to ensure correct
sequential execution after the control flow.

• The instruction can change PR’ to load the procedure link register. It must also
update PR” to the same value as PR’.

212 Abstract sequential model
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

• The instruction can change PC” and PR” to achieve a branch or procedure call
after the next instruction has completed.

Any changes made to PC’, PR’, PC” or PR” over-ride the default values.

7 Set the current program counter (PC) to the value of the next program counter
(PC’) and PR to the value of PR’.

The actions associated with the handling of asynchronous and synchronous events
are described in Chapter 5: Exceptions on page 109. The actions required by step 6
depend on the instruction, and are specified by the instruction specification for that
instruction. Step 7 specifies the behavior for PC overflow. Non-delayed And Delayed

8.9.3 State changes

Non-delayed and delayed state changes are used to model the branch mechanism.
These correspond to non-delayed and delayed branches.

In the model, PC and PR are never written directly by an instruction. Instead, an
instruction writes to PC’ or PR’ to cause a non-delayed state change, or to PC” or PR”
to cause a delayed state change:

• A non-delayed state change is achieved by updating PC’ or PR’ to over-ride their
default values. After the execution of this instruction, PC’ and PR’ get copied to
PC and PR respectively, and then influence instruction execution. Hence, there
is no delay slot before the values of PC’ and PR’ propagate through to PC and PR.

• A delayed state change is achieved by updating PC” or PR” to over-ride their
default values. After the execution of this instruction, PC” and PR” get copied to
PC’ and PR’ respectively. After the execution of the next instruction, PC’ and PR’
get copied to PC and PR respectively, and then influence instruction execution.
Hence, there is a delay slot before the values of PC’ and PR” propagate through
to PC and PR.

There are potential ambiguities when one instruction makes a delayed state change
and the immediately following instruction (which is in a delay slot) makes a
non-delayed state change. These are handled as follows:

• The case of a delayed state change to PC immediately followed by a non-delayed
state change to PC does not occur. This is because delay slot instructions that
write to PC are illegal and cause an ILLSLOT exception.

Example instructions 213
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

• The case of a delayed state change to PR immediately followed by a non-delayed
state change to PR can occur. The ambiguous cases are when a BSR, BSRF or
JSR instruction is followed by an LDS that writes to PR. In this case the PR,
observed by the instruction that dynamically follows the LDS instruction, is the
value written by LDS not the value written by the sub-routine call. This
behavior follows from the model described above.

There are also potential ambiguities when one instruction makes a delayed state
change and the immediately following instruction (which is in a delay slot) reads
from that state. These are handled as follows:

• The case of a delayed state change to PC immediately followed by a read of PC
does not occur. This is because delay slot instructions that read from PC are
illegal and cause an ILLSLOT exception.

• The case of a delayed state change to PR immediately followed by a read from PR
can occur. The ambiguous cases are when a BSR, BSRF or JSR instruction is
followed by an STS that reads from PR. In this case the PR, observed by the STS
instruction, is the value written by the sub-routine call and not the previous
value. This behavior is modeled explicitly in the definition of the STS
instruction. It reads the value from PR’ (rather than the intuitive read from PR).

8.10 Example instructions

8.10.1 ADD #imm, Rn

An example specification for this instruction is shown below.

ADD #imm, Rn

0111 n s

15 12 11 8 7 0

imm ← SignExtend8(s);
op2 ← SignExtend32(Rn);
op2 ← op2 + imm;
Rn ← Register(op2);

214 Example instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

The top half of this figure shows the assembly syntax and the binary encoding of the
instruction. Particular fields within the encoding are identified by single characters.
The opcode field, and any extension field, contain the literal encoding values
associated with that instruction. Reserved fields must be encoded with the literal
value given in the figure. Operand fields contain register designators or immediate
constants.

The lower half of this figure specifies the effects of the execution of the instruction
on the architectural state of the machine. The specification statements are
organized into 3 stages as follows:

1 The first two statements read all required source information:

imm ← SignExtend8(s);

op2 ← SignExtend32(Rn);

The first statement reads the value of s, interprets it as a sign-extended 8-bit
integer value and assigns this to a temporary integer called ‘imm’. The name
‘imm’ corresponds to the name of the immediate used in the assembly syntax.
The second statement reads the value of Rn register, interprets it as a
sign-extended 32-bit integer value and assigns this to a temporary integer called
op2.

2 The next statement implements the addition:

op2 ← op2 + imm;

This statement does not refer to any architectural state. It adds the 2 integers
‘imm’ and ‘op2’ together, and assigns the result to a temporary integer called
‘op2’. Note that since this is a conventional mathematical addition, the result
can contain more significant bits of information than the sources.

3 The final statement updates the architectural state:

Rn ← Register(op2);

The integer ‘op2’ is converted back to a register bit-field, assigned to the Rn
register.

Example instructions 215
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

8.10.2 FADD FRm, FRn

An example specification for this instruction is shown below.

The specification statements are organized as follows:

1 Read all required source information:

sr ← ZeroExtend32(SR);

fps ← ZeroExtend32(FPSCR);

op1 ← FloatValue32(FRm);

op2 ← FloatValue32(FRn);

Execute the instruction:
IF (FpuIsDisabled(sr) AND IsDelaySlot())
THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

FADD FRm, FRn

1111 n m 0000

15 12 11 8 7 4 3 0

Available only when PR=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue32(FRm);
op2 ← FloatValue32(FRn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2, fps ← FADD_S(op1, op2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
FRn ← FloatRegister32(op2);
FPSCR ← ZeroExtend32(fps);

216 Example instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

THROW FPUDIS;
op2, fps ← FADD_S(op1, op2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))
THROW FPUEXC, fps;
IF (FpuCauseE(fps))
THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))
THROW FPUEXC, fps;

The behavior of the floating-point single-precision addition is modelled by the
FADD_S procedure. This procedure is given the two source operands and the
current value of FPSCR, and calculates the result and the new value of FPSCR. It is
responsible for detecting special cases and exceptions, and setting the result and
new FPSCR values accordingly.

This instruction contains exception cases. These are detected by IF statements and
are raised by THROW statements. When a THROW statement is executed, no
further statements from the specification are processed. In exception cases, this
specification makes no updates to architectural state. Instead, a handler is launched
for the exception as described in Chapter 5: Exceptions on page 109. The THROW
statement includes arguments to specify the kind of exception and any necessary
parameters of that exception. For an FPUEXC exception, the THROW statement
includes an updated value of ‘fps’ which the exception handler uses to initialize
FPSCR during the launch sequence.

2 Update the architectural state:

FRn ← FloatRegister32(op2);

FPSCR ← ZeroExtend32(fps);

PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

9Instruction
descriptions
9.1 Alphabetical list of instructions

Instructions are listed in this section in alphabetical order.

218 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

ADD Rm, Rn
Description

This instruction adds Rm to Rn and places the result in Rn.

Operation

Note

ADD Rm, Rn

0011 n m 1100

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← SignExtend32(Rn);
op2 ← op2 + op1;
Rn ← Register(op2);

Alphabetical list of instructions 219
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

ADD #imm, Rn
Description

This instruction adds Rn to the sign-extended 8-bit immediate s and places the
result in Rn.

Operation

Note

The ‘#imm’ in the assembly syntax represents the immediate s after sign extension.

ADD #imm, Rn

0111 n s

15 12 11 8 7 0

imm ← SignExtend8(s);
op2 ← SignExtend32(Rn);
op2 ← op2 + imm;
Rn ← Register(op2);

220 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

ADDC Rm, Rn
Description

This instruction adds Rm, Rn and the T-bit. The result of the addition is placed in Rn.
and the carry-out from the addition is placed in the T-bit.

Operation

Note

ADDC Rm, Rn

0011 n m 1110

15 12 11 8 7 4 3 0

t ← ZeroExtend1(T);
op1 ← ZeroExtend32(SignExtend32(Rm));
op2 ← ZeroExtend32(SignExtend32(Rn));
op2 ← (op2 + op1) + t;
t ← op2< 32 FOR 1 >;
Rn ← Register(op2);
T ← Bit(t);

Alphabetical list of instructions 221
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

ADDV Rm, Rn
Description

This instruction adds Rm to Rn and places the result in Rn. The T-bit is set to 1 if the
addition result is outside the 32-bit signed range, otherwise the T-bit is set to 0.

Operation

Note

ADDV Rm, Rn

0011 n m 1111

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← SignExtend32(Rn);
op2 ← op2 + op1;

t ← INT ((op2 < (- 231)) OR (op2 ≥ 231));
Rn ← Register(op2);
T ← Bit(t);

222 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

AND Rm, Rn
Description

This instruction performs bitwise AND of Rm with Rn and places the result in Rn.

Operation

Note

This instruction performs a 32-bit bitwise AND.

AND Rm, Rn

0010 n m 1001

15 12 11 8 7 4 3 0

op1 ← ZeroExtend32(Rm);
op2 ← ZeroExtend32(Rn);
op2 ← op2 ∧ op1;
Rn ← Register(op2);

Alphabetical list of instructions 223
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

AND #imm, R0
Description

This instruction performs bitwise AND of R0 with the zero-extended 8-bit
immediate i and places the result in R0.

Operation

Note

This instruction performs a 32-bit bitwise AND. The ‘#imm’ in the assembly syntax
represents the immediate i after zero extension.

AND #imm, R0

11001001 i

15 8 7 0

r0 ← ZeroExtend32(R0);
imm ← ZeroExtend8(i);
r0 ← r0 ∧ imm;
R0 ← Register(r0);

224 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

AND.B #imm, @(R0, GBR)
Description

This instruction performs a bitwise AND of an immediate constant with 8 bits of
data held in memory. The effective address is calculated by adding R0 and GBR. The
8 bits of data at the effective address are read. A bitwise AND is performed of the
read data with the zero-extended 8-bit immediate i. The result is written back to the
8 bits of data at the same effective address.

Operation

Exceptions

WADDERR, WTLBMISS, READPROT, WRITEPROT, FIRSTWRITE

Note

Zero-extension is performed on the effective address computation allowing wrap
around to occur.

The ‘#imm’ in the assembly syntax represents the immediate i after zero extension.

AND.B #imm, @(R0, GBR)

11001101 i

15 8 7 0

r0 ← SignExtend32(R0);
gbr ← SignExtend32(GBR);
imm ← ZeroExtend8(i);
address ← ZeroExtend32(r0 + gbr);
value ← ZeroExtend8(ReadMemory8(address));
value ← value ∧ imm;
WriteMemory8(address, value);

Alphabetical list of instructions 225
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

BF label
Description

This instruction is a conditional branch. The 8-bit displacement s is sign-extended,
doubled and added to PC+4 to form the target address. If the T-bit is 1, the branch is
not taken. If the T-bit is 0, the target address is copied to the PC.

Operation

Exceptions

ILLSLOT

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

BF label

10001011 s

15 8 7 0

t ← ZeroExtend1(T);
pc ← SignExtend32(PC);
newpc ← SignExtend32(PC’);
delayedpc ← SignExtend32(PC’’);
label ← SignExtend8(s) << 1;
IF (IsDelaySlot())

THROW ILLSLOT;
IF (t = 0)
{

temp ← ZeroExtend32(pc + 4 + label);

newpc ← temp;
delayedpc ← temp + 2;

}
PC’ ← Register(newpc);
PC’’ ← Register(delayedpc);

226 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

This is not a delayed branch instruction. An ILLSLOT exception is raised if this
instruction is executed in a delay slot.

The ‘label’ in the assembly syntax represents the immediate s after sign extension
and scaling.

If the branch target address is invalid then the IADDERR trap is not delivered until
after the branch instruction completes its execution and the PC has advanced to the
target address, that is the exception is associated with the target instruction not the
branch.

Alphabetical list of instructions 227
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

BF/S label
Description

This instruction is a delayed conditional branch. The 8-bit displacement s is
sign-extended, doubled and added to PC+4 to form the target address. If the T-bit is
1, the branch is not taken. If the T-bit is 0, the delay slot is executed and then the
target address is copied to the PC.

Operation

Exceptions

ILLSLOT

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

The delay slot is executed before branching. An ILLSLOT exception is raised if this
instruction is executed in a delay slot.

BF/S label

10001111 s

15 8 7 0

t ← ZeroExtend1(T);
pc ← SignExtend32(PC);
delayedpc ← SignExtend32(PC’’);
label ← SignExtend8(s) << 1;
IF (IsDelaySlot())

THROW ILLSLOT;
IF (t = 0)
{

temp ← ZeroExtend32(pc + 4 + label);

delayedpc ← temp;
}
PC’’ ← Register(delayedpc);

228 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

The ‘label’ in the assembly syntax represents the immediate s after sign extension
and scaling.

If the branch target address is invalid then IADDERR trap is not delivered until
after the instruction in the delay slot has executed and the PC has advanced to the
target address, that is the exception is associated with the target instruction not the
branch.

Alphabetical list of instructions 229
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

BRA label
Description

This instruction is a delayed unconditional branch. The 12-bit displacement s is
sign-extended, doubled and added to PC+4 to form the target address. The delay slot
is executed and then the target address is copied to the PC.

Operation

Exceptions

ILLSLOT

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

The delay slot is executed before branching. An ILLSLOT exception is raised if this
instruction is executed in a delay slot.

The ‘label’ in the assembly syntax represents the immediate s after sign extension
and scaling.

If the branch target address is invalid then IADDERR trap is not delivered until
after the instruction in the delay slot has executed and the PC has advanced to the
target address, that is the exception is associated with the target instruction not the
branch.

BRA label

1010 s

15 12 11 0

pc ← SignExtend32(PC);
label ← SignExtend12(s) << 1;
IF (IsDelaySlot())

THROW ILLSLOT;
temp ← ZeroExtend32(pc + 4 + label);

delayedpc ← temp;
PC’’ ← Register(delayedpc);

230 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

BRAF Rn
Description

This instruction is a delayed unconditional branch. The target address is calculated
by adding Rn to PC+4. If the least significant bit of the target address is set, an
IADDERR exception is raised, otherwise, the delay slot is executed.

Operation

Exceptions

ILLSLOT

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

The delay slot is executed before branching occurs. An ILLSLOT exception is raised
if this instruction is executed in a delay slot.

If the branch target address is invalid then IADDERR trap is not delivered until
after the instruction in the delay slot has executed and the PC has advanced to the
target address, that is the exception is associated with the target instruction not the
branch.

BRAF Rn

0000 n 00100011

15 12 11 8 7 0

pc ← SignExtend32(PC);
op1 ← SignExtend32(Rn);
IF (IsDelaySlot())

THROW ILLSLOT;
target ← ZeroExtend32(pc + 4 + op1);

delayedpc ← target ∧ (~ 0x1);
PC’’ ← Register(delayedpc);

Alphabetical list of instructions 231
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

BRK
Description

The BRK instruction causes a pre-execution BREAK exception. This exception is
generated even BRK is executed in a delay slot. BRK is typically reserved for use by
the debugger.

Operation

Exceptions

BREAK

BRK

0000000000111011

15 0

THROW BREAK;

232 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

BSR label
Description

This instruction is a delayed unconditional branch used for branching to a
subroutine. The 12-bit displacement s is sign-extended, doubled and added to PC+4
to form the target address. The delay slot is executed and then the target address is
copied to the PC. The address of the instruction immediately following the delay slot
is copied to PR to indicate the return address.

Operation

Exceptions

ILLSLOT

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

The delay slot is executed before branching. An ILLSLOT exception is raised if this
instruction is executed in a delay slot. The ‘label’ in the assembly syntax represents
the immediate s after sign extension and scaling.

BSR label

1011 s

15 12 11 0

pc ← SignExtend32(PC);
label ← SignExtend12(s) << 1;
IF (IsDelaySlot())

THROW ILLSLOT;
delayedpr ← pc + 4;
temp ← ZeroExtend32(pc + 4 + label);
delayedpc ← temp;
PR’’ ← Register(delayedpr);
PC’’ ← Register(delayedpc);

Alphabetical list of instructions 233
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

If the branch target address is invalid then IADDERR trap is not delivered until
after the instruction in the delay slot has executed and the PC has advanced to the
target address, that is the exception is associated with the target instruction not the
branch.

234 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

BSRF Rn
Description

This instruction is a delayed unconditional branch used for branching to a far
subroutine. The target address is calculated by adding Rn to PC+4. If the least
significant bit of the target address is set, an IADDERR exception is raised,
otherwise, the delay slot is executed. The address of the instruction immediately
following the delay slot is copied to PR to indicate the return address.

Operation

Exceptions

ILLSLOT

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

The delay slot is executed before branching and before PR is updated. An ILLSLOT
exception is raised if this instruction is executed in a delay slot.

If the branch target address is invalid then IADDERR trap is not delivered until
after the instruction in the delay slot has executed and the PC has advanced to the
target address, that is the exception is associated with the target instruction not the
branch.

BSRF Rn

0000 n 00000011

15 12 11 8 7 0

pc ← SignExtend32(PC);
op1 ← SignExtend32(Rn);
IF (IsDelaySlot())

THROW ILLSLOT;
delayedpr ← pc + 4;
target ← ZeroExtend32(pc + 4 + op1);

delayedpc ← target ∧ (~ 0x1);
PR’’ ← Register(delayedpr);
PC’’ ← Register(delayedpc);

Alphabetical list of instructions 235
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

BT label
Description

This instruction is a conditional branch. The 8-bit displacement s is sign-extended,
doubled and added to PC+4 to form the target address. If the T-bit is 0, the branch is
not taken. If the T-bit is 1, the target address is copied to the PC.

Operation

Exceptions

ILLSLOT

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

BT label

10001001 s

15 8 7 0

t ← ZeroExtend1(T);
pc ← SignExtend32(PC);
newpc ← SignExtend32(PC’);
delayedpc ← SignExtend32(PC’’);
label ← SignExtend8(s) << 1;
IF (IsDelaySlot())

THROW ILLSLOT;
IF (t = 1)
{

temp ← ZeroExtend32(pc + 4 + label);

newpc ← temp;
delayedpc ← temp + 2;

}
PC’ ← Register(newpc);
PC’’ ← Register(delayedpc);

236 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

This is not a delayed branch instruction. An ILLSLOT exception is raised if this
instruction is executed in a delay slot.

The ‘label’ in the assembly syntax represents the immediate s after sign extension
and scaling.

If the branch target address is invalid then the IADDERR trap is not delivered until
after the branch instruction completes its execution and the PC has advanced to the
target address, that is the exception is associated with the target instruction not the
branch.

Alphabetical list of instructions 237
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

BT/S label
Description

This instruction is a delayed conditional branch. The 8-bit displacement s is
sign-extended, doubled and added to PC+4 to form the target address. If the T-bit is
0, the branch is not taken. If the T-bit is 1, the delay slot is executed and then the
target address is copied to the PC.

Operation

Exceptions

ILLSLOT

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

The delay slot is executed before branching. An ILLSLOT exception is raised if this
instruction is executed in a delay slot.

BT/S label

10001101 s

15 8 7 0

t ← ZeroExtend1(T);
pc ← SignExtend32(PC);
delayedpc ← SignExtend32(PC’’);
label ← SignExtend8(s) << 1;
IF (IsDelaySlot())

THROW ILLSLOT;
IF (t = 1)
{

temp ← ZeroExtend32(pc + 4 + label);

delayedpc ← temp;
}
PC’’ ← Register(delayedpc);

238 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

The ‘label’ in the assembly syntax represents the immediate s after sign extension
and scaling.

If the branch target address is invalid then IADDERR trap is not delivered until
after the instruction in the delay slot has executed and the PC has advanced to the
target address, that is the exception is associated with the target instruction not the
branch.

Alphabetical list of instructions 239
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

CLRMAC
Description

This instruction clears MACL and MACH.

Operation

CLRMAC

0000000000101000

15 0

macl ← 0;
mach ← 0;
MACL ← ZeroExtend32(macl);
MACH ← ZeroExtend32(mach);

240 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

CLRS
Description

This instruction clears the S-bit.

Operation

CLRS

0000000001001000

15 0

s ← 0;
S ← Bit(s);

Alphabetical list of instructions 241
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

CLRT
Description

This instruction clears the T-bit.

Operation

CLRT

0000000000001000

15 0

t ← 0;
T ← Bit(t);

242 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

CMP/EQ Rm, Rn
Description

This instruction sets the T-bit if the value of Rn is equal to the value of Rm,
otherwise it clears the T-bit.

Operation

Note

CMP/EQ Rm, Rn

0011 n m 0000

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← SignExtend32(Rn);
t ← INT (op2 = op1);
T ← Bit(t);

Alphabetical list of instructions 243
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

CMP/EQ #imm, R0
Description

This instruction sets the T-bit if the value of R0 is equal to the sign-extended 8-bit
immediate s, otherwise it clears the T-bit.

Operation

Note

The ‘#imm’ in the assembly syntax represents the immediate s after sign extension.

CMP/EQ #imm, R0

10001000 s

15 8 7 0

r0 ← SignExtend32(R0);
imm ← SignExtend8(s);
t ← INT (r0 = imm);
T ← Bit(t);

244 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

CMP/GE Rm, Rn
Description

This instruction sets the T-bit if the signed value of Rn is greater than or equal to
the signed value of Rm, otherwise it clears the T-bit.

Operation

Note

CMP/GE Rm, Rn

0011 n m 0011

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← SignExtend32(Rn);
t ← INT (op2 ≥ op1);
T ← Bit(t);

Alphabetical list of instructions 245
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

CMP/GT Rm, Rn
Description

This instruction sets the T-bit if the signed value of Rn is greater than the signed
value of Rm, otherwise it clears the T-bit.

Operation

Note

CMP/GT Rm, Rn

0011 n m 0111

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← SignExtend32(Rn);
t ← INT (op2 > op1);
T ← Bit(t);

246 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

CMP/HI Rm, Rn
Description

This instruction sets the T-bit if the unsigned value of Rn is greater than the
unsigned value of Rm, otherwise it clears the T-bit.

Operation

Note

CMP/HI Rm, Rn

0011 n m 0110

15 12 11 8 7 4 3 0

op1 ← ZeroExtend32(SignExtend32(Rm));
op2 ← ZeroExtend32(SignExtend32(Rn));
t ← INT (op2 > op1);
T ← Bit(t);

Alphabetical list of instructions 247
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

CMP/HS Rm, Rn
Description

This instruction sets the T-bit if the unsigned value of Rn is greater than or equal to
the unsigned value of Rm, otherwise it clears the T-bit.

Operation

Note

CMP/HS Rm, Rn

0011 n m 0010

15 12 11 8 7 4 3 0

op1 ← ZeroExtend32(SignExtend32(Rm));
op2 ← ZeroExtend32(SignExtend32(Rn));
t ← INT (op2 ≥ op1);
T ← Bit(t);

248 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

CMP/PL Rn
Description

This instruction sets the T-bit if the signed value of Rn is greater than 0, otherwise
it clears the T-bit.

Operation

Note

CMP/PL Rn

0100 n 00010101

15 12 11 8 7 0

op1 ← SignExtend32(Rn);
t ← INT (op1 > 0);
T ← Bit(t);

Alphabetical list of instructions 249
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

CMP/PZ Rn
Description

This instruction sets the T-bit if the signed value of Rn is greater than or equal to 0,
otherwise it clears the T-bit.

Operation

Note

CMP/PZ Rn

0100 n 00010001

15 12 11 8 7 0

op1 ← SignExtend32(Rn);
t ← INT (op1 ≥ 0);
T ← Bit(t);

250 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

CMP/STR Rm, Rn
Description

This instruction sets the T-bit if any byte in Rn has the same value as the
corresponding byte in Rm, otherwise it clears the T-bit.

Operation

Note

CMP/STR Rm, Rn

0010 n m 1100

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← SignExtend32(Rn);
temp ← op1 ⊕ op2;
t ← INT (temp< 0 FOR 8 > = 0);
t ← (INT (temp< 8 FOR 8 > = 0)) ∨ t;
t ← (INT (temp< 16 FOR 8 > = 0)) ∨ t;
t ← (INT (temp< 24 FOR 8 > = 0)) ∨ t;
T ← Bit(t);

Alphabetical list of instructions 251
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

DIV0S Rm, Rn
Description

This instruction initializes the divide-step state for a signed division. The Q-bit is
initialized with the sign-bit of the dividend, and the M-bit with the sign-bit of the
divisor. The T-bit is initialized to 0 if the Q-bit and the M-bit are the same,
otherwise it is initialized to 1.

Operation

Note

DIV0S Rm, Rn

0010 n m 0111

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← SignExtend32(Rn);
q ← op2< 31 FOR 1 >;
m ← op1< 31 FOR 1 >;
t ← m ⊕ q;
Q ← Bit(q);
M ← Bit(m);
T ← Bit(t);

252 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

DIV0U
Description

This instruction initializes the divide-step state for an unsigned division. The Q-bit,
M-bit and T-bit are all set to 0.

Operation

DIV0U

0000000000011001

15 0

q ← 0;
m ← 0;
t ← 0;
Q ← Bit(q);
M ← Bit(m);
T ← Bit(t);

Alphabetical list of instructions 253
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

DIV1 Rm, Rn
Description

This instruction is used to perform a single-bit divide-step for the division of a
dividend held in Rn by a divisor held in Rm. The Q-bit, M-bit and T-bit are used to
hold additional state through a divide-step sequence. Each DIV1 consumes 1 bit of
the dividend from Rn, and produces 1 bit of result. The divide initialization and step
instructions do not detect divide-by-zero nor overflow. If required, these cases
should be checked using additional instructions.

Operation

Note

DIV1 Rm, Rn

0011 n m 0100

15 12 11 8 7 4 3 0

q ← ZeroExtend1(Q);
m ← ZeroExtend1(M);
t ← ZeroExtend1(T);
op1 ← ZeroExtend32(SignExtend32(Rm));
op2 ← ZeroExtend32(SignExtend32(Rn));
oldq ← q;
q ← op2< 31 FOR 1 >;
op2 ← ZeroExtend32(op2 << 1) ∨ t;
IF (oldq = m)

op2 ← op2 - op1;
ELSE

op2 ← op2 + op1;
q ← (q ⊕ m) ⊕ op2< 32 FOR 1 >;
t ← 1 - (q ⊕ m);
Rn ← Register(op2);
Q ← Bit(q);
T ← Bit(t);

254 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

DMULS.L Rm, Rn
Description

This instruction multiplies the signed 32-bit value held in Rm with the signed 32-bit
value held in Rn to give a full 64-bit result. The lower half of the result is placed in
MACL and the upper half in MACH.

Operation

Note

DMULS.L Rm, Rn

0011 n m 1101

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← SignExtend32(Rn);
mac ← op2 × op1;
macl ← mac;
mach ← mac >> 32;
MACL ← ZeroExtend32(macl);
MACH ← ZeroExtend32(mach);

Alphabetical list of instructions 255
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

DMULU.L Rm, Rn
Description

This instruction multiplies the unsigned 32-bit value held in Rm with the unsigned
32-bit value held in Rn to give a full 64-bit result. The lower half of the result is
placed in MACL and the upper half in MACH.

Operation

Note

DMULU.L Rm, Rn

0011 n m 0101

15 12 11 8 7 4 3 0

op1 ← ZeroExtend32(SignExtend32(Rm));
op2 ← ZeroExtend32(SignExtend32(Rn));
mac ← op2 × op1;
macl ← mac;
mach ← mac >> 32;
MACL ← ZeroExtend32(macl);
MACH ← ZeroExtend32(mach);

256 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

DT Rn
Description

This instruction subtracts 1 from Rn and placed the result in Rn. The T-bit is set if
the result is zero, otherwise the T-bit is cleared.

Operation

Note

DT Rn

0100 n 00010000

15 12 11 8 7 0

op1 ← SignExtend32(Rn);
op1 ← op1 - 1;
t ← INT (op1 = 0);
Rn ← Register(op1);
T ← Bit(t);

Alphabetical list of instructions 257
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

EXTS.B Rm, Rn
Description

This instruction reads the 8 least significant bits of Rm, sign-extends, and places the
result in Rn.

Operation

Note

EXTS.B Rm, Rn

0110 n m 1110

15 12 11 8 7 4 3 0

op1 ← SignExtend8(Rm);
op2 ← op1;
Rn ← Register(op2);

258 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

EXTS.W Rm, Rn
Description

This instruction reads the 16 least significant bits of Rm, sign-extends, and places
the result in Rn.

Operation

Note

EXTS.W Rm, Rn

0110 n m 1111

15 12 11 8 7 4 3 0

op1 ← SignExtend16(Rm);
op2 ← op1;
Rn ← Register(op2);

Alphabetical list of instructions 259
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

EXTU.B Rm, Rn
Description

This instruction reads the 8 least significant bits of Rm, zero-extends, and places the
result in Rn.

Operation

Note

EXTU.B Rm, Rn

0110 n m 1100

15 12 11 8 7 4 3 0

op1 ← ZeroExtend8(Rm);
op2 ← op1;
Rn ← Register(op2);

260 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

EXTU.W Rm, Rn
Description

This instruction reads the 16 least significant bits of Rm, zero-extends, and places
the result in Rn.

Operation

Note

EXTU.W Rm, Rn

0110 n m 1101

15 12 11 8 7 4 3 0

op1 ← ZeroExtend16(Rm);
op2 ← op1;
Rn ← Register(op2);

Alphabetical list of instructions 261
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FABS DRn
Description

This floating-point instruction computes the absolute value of a double-precision
floating-point number. It reads DRn, clears the sign bit and places the result in DRn.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Operation

Exceptions

SLOTFPUDIS, FPUDIS

FABS DRn

1111 n 001011101

15 12 11 9 8 0

Available only when PR=1 and SZ=0

sr ← ZeroExtend32(SR);
op1 ← FloatValue64(DR2n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1 ← FABS_D(op1);
DR2n ← FloatRegister64(op1);

262 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FABS FRn
Description

This floating-point instruction computes the absolute value of a single-precision
floating-point number. It reads FRn, clears the sign bit and places the result in FRn.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Operation

Exceptions

SLOTFPUDIS, FPUDIS

FABS FRn

1111 n 01011101

15 12 11 8 7 0

Available only when PR=0

sr ← ZeroExtend32(SR);
op1 ← FloatValue32(FRn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1 ← FABS_S(op1);
FRn ← FloatRegister32(op1);

Alphabetical list of instructions 263
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FADD DRm, DRn
Description

This floating-point instruction performs a double-precision floating-point addition.
It adds DRm to DRn and places the result in DRn. The rounding mode is determined
by FPSCR.RM.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, FPUEXC

FADD DRm, DRn

1111 n 0 m 00000

15 12 11 9 8 7 5 4 0

Available only when PR=1 and SZ=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue64(DR2m);
op2 ← FloatValue64(DR2n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2, fps ← FADD_D(op1, op2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
DR2n ← FloatRegister64(op2);
FPSCR ← ZeroExtend32(fps);

264 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FADD FRm, FRn
Description

This floating-point instruction performs a single-precision floating-point addition. It
adds FRm to FRn and places the result in FRn. The rounding mode is determined by
FPSCR.RM.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, FPUEXC

FADD FRm, FRn

1111 n m 0000

15 12 11 8 7 4 3 0

Available only when PR=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue32(FRm);
op2 ← FloatValue32(FRn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2, fps ← FADD_S(op1, op2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
FRn ← FloatRegister32(op2);
FPSCR ← ZeroExtend32(fps);

Alphabetical list of instructions 265
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FADD Special Cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if either input is a signaling NaN, or if
the inputs are differently signed infinities.

3 Error: an FPU error is signaled if FPSCR.DN is zero, neither input is a NaN and
either input is a denormalized number.

4 Inexact, underflow and overflow: these are checked together and can be signaled
in combination. When inexact, underflow or overflow exceptions are requested
by the user, an exception is always raised regardless of whether that condition
arose.

If the instruction does not raise an exception, a result is generated according to the
following table.

FPU error is indicated by heavy shading and always raises an exception. Invalid
operations are indicated by light shading and raise an exception if enabled. FPU
disabled, inexact, underflow and overflow cases are not shown.

The behavior of the normal ‘ADD’ case is described by the IEEE754 specification.

op1 →
↓ op2

+NORM,
-NORM

+0 -0 +INF -INF +DNORM,
-DNORM

qNaN sNaN

+,-NORM ADD op2 op2 +INF -INF n/a qNaN qNaN

+0 op1 +0 +0 +INF -INF n/a qNaN qNaN

-0 op1 +0 -0 +INF -INF n/a qNaN qNaN

+INF +INF +INF +INF +INF qNaN n/a qNaN qNaN

-INF -INF -INF -INF qNaN -INF n/a qNaN qNaN

+, -DNORM n/a n/a n/a n/a n/a n/a qNaN qNaN

qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

sNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

266 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FCMP/EQ DRm, DRn
Description

This floating-point instruction performs a double-precision floating-point equality
comparison. It sets the T-bit to 1 if DRm is equal to DRn, and otherwise sets the T-bit
to 0.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, FPUEXC

FCMP/EQ DRm, DRn

1111 n 0 m 00100

15 12 11 9 8 7 5 4 0

Available only when PR=1 and SZ=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue64(DR2m);
op2 ← FloatValue64(DR2n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
t, fps ← FCMPEQ_D(op1, op2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
FPSCR ← ZeroExtend32(fps);
T ← Bit(t);

Alphabetical list of instructions 267
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FCMP/EQ FRm, FRn
Description

This floating-point instruction performs a single-precision floating-point equality
comparison. It sets the T-bit to 1 if FRm is equal to FRn, and otherwise sets the T-bit
to 0.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, FPUEXC

FCMP/EQ Special Cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

FCMP/EQ FRm, FRn

1111 n m 0100

15 12 11 8 7 4 3 0

Available only when PR=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue32(FRm);
op2 ← FloatValue32(FRn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
t, fps ← FCMPEQ_S(op1, op2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
FPSCR ← ZeroExtend32(fps);
T ← Bit(t);

268 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if either input is a signaling NaN.

If the instruction does not raise an exception, a result is generated according to the
following table.

Invalid operations are indicated by light shading and raise an exception if enabled.
FPU disabled cases are not shown.

The behavior of the normal ‘CMPEQ’ case is described by the IEEE754 specification.

op1 →
↓ op2

+NORM,
-NORM

+0 -0 +INF -INF +DNORM,
-DNORM

qNaN sNaN

+,-NORM CMPEQ false false false false false false false

+0 false true true false false false false false

-0 false true true false false false false false

+INF false false false true false false false false

-INF false false false false true false false false

+, -DNORM false false false false false CMPEQ false false

qNaN false false false false false false false false

sNaN false false false false false false false false

Alphabetical list of instructions 269
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FCMP/GT DRm, DRn
Description

This floating-point instruction performs a double-precision floating-point
greater-than comparison. It sets the T-bit to 1 if DRn is greater than DRm, and
otherwise sets the T-bit to 0.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, FPUEXC

FCMP/GT DRm, DRn

1111 n 0 m 00101

15 12 11 9 8 7 5 4 0

Available only when PR=1 and SZ=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue64(DR2m);
op2 ← FloatValue64(DR2n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
t, fps ← FCMPGT_D(op2, op1, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
FPSCR ← ZeroExtend32(fps);
T ← Bit(t);

270 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FCMP/GT FRm, FRn
Description

This floating-point instruction performs a single-precision floating-point
greater-than comparison. It sets the T-bit to 1 if FRn is greater than FRm, and
otherwise sets the T-bit to 0.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, FPUEXC

FCMP/GT Special Cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

FCMP/GT FRm, FRn

1111 n m 0101

15 12 11 8 7 4 3 0

Available only when PR=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue32(FRm);
op2 ← FloatValue32(FRn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
t, fps ← FCMPGT_S(op2, op1, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
FPSCR ← ZeroExtend32(fps);
T ← Bit(t);

Alphabetical list of instructions 271
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if either input is a NaN.

If the instruction does not raise an exception, a result is generated according to the
following table.

Invalid operations are indicated by light shading and raise an exception if enabled.
FPU disabled cases are not shown.

The behavior of the normal ‘CMPGT’ case is described by the IEEE754 specification.

op2 →
↓ op1

+NORM,
-NORM

+0 -0 +INF -INF +DNORM,
-DNORM

qNaN sNaN

+,-NORM CMPGT CMPGT CMPGT true false CMPGT false false

+0 CMPGT false false true false CMPGT false false

-0 CMPGT true false true false CMPGT false false

+INF false false false false false false false false

-INF true true true true false true false false

+, -DNORM CMPGT CMPGT CMPGT true false CMPGT false false

qNaN false false false false false false false false

sNaN false false false false false false false false

272 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FCNVDS DRm, FPUL
Description

This floating-point instruction performs a double-precision to single-precision
floating-point conversion. It reads a double-precision value from DRm, converts it to
single-precision and places the result in FPUL. The rounding mode is determined by
FPSCR.RM.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, FPUEXC

FCNVDS DRm, FPUL

1111 m 010111101

15 12 11 9 8 0

Available only when PR=1 and SZ=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue64(DR2m);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
fpul, fps ← FCNV_DS(op1, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
FPSCR ← ZeroExtend32(fps);
FPUL ← ZeroExtend32(fpul);

Alphabetical list of instructions 273
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FCNVSD FPUL, DRn
Description

This floating-point instruction performs a single-precision to double-precision
floating-point conversion. It reads a single-precision value from FPUL, converts it to
double-precision and places the result in DRn. FPSCR.RM has no effect since the
conversion is exact.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, FPUEXC

FCNVSD FPUL, DRn

1111 n 010101101

15 12 11 9 8 0

Available only when PR=1 and SZ=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
fpul ← SignExtend32(FPUL);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1, fps ← FCNV_SD(fpul, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
DR2n ← FloatRegister64(op1);
FPSCR ← ZeroExtend32(fps);

274 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FCNVDS and FCNVSD Special Cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if the input is a signaling NaN.

3 Error: an FPU error is signaled if FPSCR.DN is zero and the input is a denor-
malized number.

4 Inexact, underflow and overflow: these are checked together and can be signaled
in combination. These cases occur for FCNVDS but not for FCNVSD. When inex-
act, underflow or overflow exceptions are requested by the user, an exception is
always raised for FCNVDS regardless of whether that condition arose.

If the instruction does not raise an exception, a result is generated according to the
following table.

FPU error is indicated by heavy shading and always raises an exception. Invalid
operations are indicated by light shading and raise an exception if enabled. FPU
disabled, inexact, underflow and overflow cases are not shown.

The behavior of the normal ‘CNV’ case is described by the IEEE754 specification.

op1 → +NORM -NORM +0 -0 +INF -INF +DNORM,
-DNORM

qNaN sNaN

CNV CNV +0 -0 +INF -INF n/a qNaN qNaN

Alphabetical list of instructions 275
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FDIV DRm, DRn
Description

This floating-point instruction performs a double-precision floating-point division. It
divides DRn by DRm and places the result in DRn. The rounding mode is determined
by FPSCR.RM.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, FPUEXC

FDIV DRm, DRn

1111 n 0 m 00011

15 12 11 9 8 7 5 4 0

Available only when PR=1 and SZ=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue64(DR2m);
op2 ← FloatValue64(DR2n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2, fps ← FDIV_D(op2, op1, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuEnableZ(fps) AND FpuCauseZ(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
DR2n ← FloatRegister64(op2);
FPSCR ← ZeroExtend32(fps);

276 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FDIV FRm, FRn
Description

This floating-point instruction performs a single-precision floating-point division. It
divides FRn by FRm and places the result in FRn. The rounding mode is determined
by FPSCR.RM.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, FPUEXC

FDIV FRm, FRn

1111 n m 0011

15 12 11 8 7 4 3 0

Available only when PR=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue32(FRm);
op2 ← FloatValue32(FRn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2, fps ← FDIV_S(op2, op1, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuEnableZ(fps) AND FpuCauseZ(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
FRn ← FloatRegister32(op2);
FPSCR ← ZeroExtend32(fps);

Alphabetical list of instructions 277
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FDIV Special Cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if either input is a signaling NaN, or if
the division is of a zero by a zero, or of an infinity by an infinity.

3 Divide-by-zero: a divide-by-zero is signaled if the divisor is zero and the dividend
is a finite non-zero number.

4 Error: an FPU error is signaled if FPSCR.DN is zero, neither input is a NaN and
either of the following conditions is true: the divisor is a denormalized number,
or the dividend is a denormalized number and the divisor is not a zero.

5 Inexact, underflow and overflow: these are checked together and can be signaled
in combination. When inexact, underflow or overflow exceptions are requested
by the user, an exception is always raised regardless of whether that condition
arose.

If the instruction does not raise an exception, a result is generated as follows:

FPU error is indicated by heavy shading and always raises an exception. Invalid
operations and divide-by-zero are indicated by light shading and raise an exception
if enabled. FPU disabled, inexact, underflow and overflow cases are not shown.

op2 →
↓ op1

+NORM,
-NORM

+0 -0 +INF -INF +DNORM,
-DNORM

qNaN sNaN

+,-NORM DIV +0, -0 -0, +0 +INF, -INF -INF, +INF n/a qNaN qNaN

+0 +INF, -INF qNaN qNaN +INF -INF +INF, -INF qNaN qNaN

-0 -INF, +INF qNaN qNaN -INF +INF -INF, +INF qNaN qNaN

+INF +0, -0 +0 -0 qNaN qNaN n/a qNaN qNaN

-INF -0, +0 -0 +0 qNaN qNaN n/a qNaN qNaN

+, -DNORM n/a n/a n/a n/a n/a n/a qNaN qNaN

qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

sNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

278 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

The behavior of the normal ‘DIV’ case is described by the IEEE754 specification.

Alphabetical list of instructions 279
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FIPR FVm, FVn
Description

This floating-point instruction computes dot-product of two vectors, FVm and FVn,
and places the result in element 3 of FVn. Each vector contains four single-precision
floating-point values. The dot-product is specified as:

FRn+3 =

This is an approximate computation. The specified error in the result value:

spec_error =

where

rm =

E = unbiased exponent value of the result

ez < -252

epm = max (ep0, ep1, ep2, ep3)

epi = pre-normalized exponent of the product FRm+i and FRn+i

eFRm+i = biased exponent value of FRm+i

eFRn+i = biased exponent value of FRn+i

epi =

FR
m i+ FR

n i+×
i 0=

3

∑

0 if epm ez=()

2
epm 24–

2
E 24– rm+

+ if epm ez≠()



0 if round to– nearest–()
1 if round to– zero–()




ez if FR
m i+ 0.0=()OR FR

n i+ 0.0=()()

max eFR
m i+ 1(,) max eFR

n i+ 1(,) 254–+ otherwise



280 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Operation

Exceptions

SLOTFPUDIS, FPUDIS, FPUEXC

FIPR Special Cases:

FIPR is an approximate instruction. Denormalized numbers are supported:

• When FPSCR.DN is 0, denormalized numbers are treated as their denormalized
value in the FIPR.S calculation. This instruction never signals an FPU error.

• When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied
before exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

FIPR FVm, FVn

1111 n m 11101101

15 12 11 10 9 8 7 0

Available only when PR=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValueVector32(FV4m);
op2 ← FloatValueVector32(FV4n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2[3], fps ← FIPR_S(op1, op2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
FV4n ← FloatRegisterVector32(op2);
FPSCR ← ZeroExtend32(fps);

Alphabetical list of instructions 281
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if any of the following arise:

• Any of the inputs is a signaling NaN.

• Multiplication of a zero by an infinity.

• Addition of differently signed infinities where none of the inputs is a qNaN.

The multiplication is performed with sufficient precision to avoid overflow, and
therefore the multiplication of any two finite numbers does not produce an
infinity. The multiplication result will be an infinity only if there is a
multiplication of an infinity with a normalized number, an infinity with a
denormalized number or an infinity with an infinity.

The addition of differently signed infinities is detected if there is (at least) one
positive infinity and (at least) one negative infinity in the set of 4 multiplication
results.

3 Inexact, underflow and overflow: these are checked together and can be signaled
in combination. This is an approximate instruction and inexact is signaled
except where special cases occur. Precise details of the approximate inner-prod-
uct algorithm, including the detection of underflow and overflow cases, are
implementation dependent. When inexact, underflow or overflow exceptions are
requested by the user, an exception is always raised regardless of whether that
condition arose.

If the instruction does not raise an exception, a result is generated according to the
following tables. Where the behavior is not a special case, the instruction computes
an approximate result using an implementation-dependent algorithm.

282 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FIPR Special Cases (continued):

Each of the 4 pairs of multiplication operands (op1 and op2) is selected from
corresponding elements of the two 4-element source vectors and multiplied:

If any of the multiplications evaluates to qNaN, then the result of the instruction is
qNaN and no further analysis need be performed. In the ‘FIPRMUL’, +0, -0, +INF
and -INF cases, the 4 addition operands (labelled intermediate 0 to 3) are summed:

Inexact is signaled in the ‘FIPRADD’ case. Invalid operations are indicated by light
shading and raise an exception if enabled. FPU disabled, inexact, underflow and
overflow cases are not shown.

op1 →
↓ op2

+,-NORM,
+,-DENORM

+0 -0 +INF -INF qNaN sNaN

+,-NORM +,-DENORM FIPRMUL +0, -0 -0, +0 +INF, -INF -INF, +INF qNaN qNaN

+0 +0, -0 +0 -0 qNaN qNaN qNaN qNaN

-0 -0, +0 -0 +0 qNaN qNaN qNaN qNaN

+INF +INF, -INF qNaN qNaN +INF -INF qNaN qNaN

-INF -INF, +INF qNaN qNaN -INF +INF qNaN qNaN

qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

sNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

intermediate 0 → FIPRMUL, +0, -0 +INF -INF

↓ intermediate 2

intermediate 1→

↓ intermediate 3

FIPRMUL,
+0, -0

+INF -INF FIPRMUL,
+0, -0

+INF -INF FIPRMUL,
+0, -0

+INF -INF

FIPRMUL,
+0, -0

FIPRMUL, +0, -0 FIPRADD +INF -INF +INF +INF qNaN -INF qNaN -INF

+INF +INF +INF qNaN +INF +INF qNaN qNaN qNaN qNaN

-INF -INF qNaN -INF qNaN qNaN qNaN -INF qNaN -INF

+INF FIPRMUL, +0, -0 +INF +INF qNaN +INF +INF qNaN qNaN qNaN qNaN

+INF +INF +INF qNaN +INF +INF qNaN qNaN qNaN qNaN

-INF qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

-INF FIPRMUL, +0, -0 -INF qNaN -INF qNaN qNaN qNaN -INF qNaN -INF

+INF qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

-INF -INF qNaN -INF qNaN qNaN qNaN -INF qNaN -INF

Alphabetical list of instructions 283
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FLDS FRm, FPUL
Description

This floating-point instruction copies FRm to FPUL.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations.

Operation

Exceptions

SLOTFPUDIS, FPUDIS

FLDS FRm, FPUL

1111 m 00011101

15 12 11 8 7 0

sr ← ZeroExtend32(SR);
op1 ← FloatValue32(FRm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
fpul ← op1;
FPUL ← ZeroExtend32(fpul);

284 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FLDI0 FRn
Description

This floating-point instruction loads a constant representing the single-precision
floating-point value of 0.0 into FRn.

Operation

Exceptions

SLOTFPUDIS, FPUDIS

FLDI0 FRn

1111 n 10001101

15 12 11 8 7 0

Available only when PR=0

sr ← ZeroExtend32(SR);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1 ← 0x00000000;
FRn ← FloatRegister32(op1);

Alphabetical list of instructions 285
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FLDI1 FRn
Description

This floating-point instruction loads a constant representing the single-precision
floating-point value of 1.0 into FRn.

Operation

Exceptions

SLOTFPUDIS, FPUDIS

FLDI1 FRn

1111 n 10011101

15 12 11 8 7 0

Available only when PR=0

sr ← ZeroExtend32(SR);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1 ← 0x3F800000;
FRn ← FloatRegister32(op1);

286 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FLOAT FPUL, DRn
Description

This floating-point instruction performs a signed 32-bit integer to double-precision
floating-point conversion. It reads a signed 32-bit integer value from FPUL,
converts it to a double-precision range and places the result in DRn. In all cases the
provided integer value will be exactly represented in the destination floating-point
format. FPSCR.RM has no effect since the conversion is exact.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, FPUEXC

FLOAT FPUL, DRn

1111 n 000101101

15 12 11 9 8 0

Available only when PR=1 and SZ=0

fpul ← SignExtend32(FPUL);
sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1, fps ← FLOAT_LD(fpul, fps);
DR2n ← FloatRegister64(op1);

Alphabetical list of instructions 287
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FLOAT FPUL, FRn
Description

This floating-point instruction performs a signed 32-bit integer to single-precision
floating-point conversion. It reads a signed 32-bit integer value from FPUL,
converts it to a single-precision range and places the result in FRn. In cases where
the integer value cannot be exactly represented in the destination floating-point
format, the rounding mode is determined by FPSCR.RM.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, FPUEXC

FLOAT Special Cases:

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

FLOAT FPUL, FRn

1111 n 00101101

15 12 11 8 7 0

Available only when PR=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
fpul ← SignExtend32(FPUL);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1, fps ← FLOAT_LS(fpul, fps);
IF (FpuEnableI(fps))

THROW FPUEXC, fps;
FRn ← FloatRegister32(op1);
FPSCR ← ZeroExtend32(fps);

288 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

1 Disabled: an exception is raised if the FPU is disabled.

2 Inexact: inexact can occur for FLOAT FPUL, FRn but not for FLOAT FPUL,
DRn. When inexact exceptions are requested by the user, an exception is always
raised for FLOAT FPUL, FRn regardless of whether that condition arose. Over-
flow and underflow do not occur for either of these instructions.

If the instruction does not raise an exception, the conversion is performed as
indicated by the IEEE754 specification.

Alphabetical list of instructions 289
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FMAC FR0, FRm, FRn
Description

This floating-point instruction performs a single-precision floating-point
multiply-accumulate. It multiplies FR0 by FRm, adds this intermediate to FRn and
places the result back to FRn. The multiplication and addition are performed as if
the exponent and precision ranges were unbounded, followed by one rounding down
to single-precision format. The rounding mode is determined by FPSCR.RM.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, FPUEXC

FMAC FR0, FRm, FRn

1111 n m 1110

15 12 11 8 7 4 3 0

Available only when PR=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
fr0 ← FloatValue32(FR0);
op1 ← FloatValue32(FRm);
op2 ← FloatValue32(FRn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2, fps ← FMAC_S(fr0, op1, op2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
FRn ← FloatRegister32(op2);
FPSCR ← ZeroExtend32(fps);

290 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FMAC Special Cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if any of the three inputs is a signaling
NaN, there is a multiplication of a zero by an infinity, or there is an addition of
differently signed infinities.

The multiplication is performed with sufficient precision to avoid overflow, and
therefore the multiplication of any two finite numbers does not produce an
infinity. The multiplication result will be an infinity only if there is a
multiplication of an infinity with a normalized number, an infinity with a
denormalized number or an infinity with an infinity.

3 Error: an FPU error is signaled if FPSCR.DN is 0 and none of the inputs are a
NaN and at least one of the inputs is a denormalized number.

4 Inexact, underflow and overflow: these are checked together and can be signaled
in combination. The multiply-accumulate is implemented using a fused-mac
algorithm, and these are detected during the conversion of the exactly evaluated
intermediate to the single-precision result. When inexact, underflow or overflow
exceptions are requested by the user, an exception is always raised regardless of
whether that condition arose.

If the instruction does not raise an exception, a result is generated according to the
following tables.

Firstly, the operands are checked for sNaN:

fr0 → other sNaN

op1 →
↓ op2

other sNaN other sNaN

other qNaN qNaN qNaN

sNaN qNaN qNaN qNaN qNaN

Alphabetical list of instructions 291
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FMAC Special Cases (continued):

If the result of the previous table is a qNaN, no further analysis is performed. In all
other cases, fr0 and op1 are checked for a zero multiplied by an infinity:

If the result of the previous table is a qNaN, no further analysis is performed. In all
other cases, the operands are checked for input qNaN values:

By this stage all operations involving sNaN or qNan operands have been dealt with.
If the result of the previous table is a qNaN, no further analysis is performed. In all
other cases, the operands are checked for the addition of differently signed
infinities:

fr0 →
↓ op1

other +0 -0 +INF -INF

other

+0 qNaN qNaN

-0 qNaN qNaN

+INF qNaN qNaN

-INF qNaN qNaN

fr0 → other qNaN

op1 →
↓ op2

other qNaN other qNaN

other qNaN qNaN qNaN

qNaN qNaN qNaN qNaN qNaN

fr0 → +other -other +INF -INF

op1 →
↓ op2 +o

th
er

-o
th

er

+I
N

F

-IN
F

+o
th

er

-o
th

er

+I
N

F

-IN
F

+o
th

er

-o
th

er

+I
N

F

-IN
F

+o
th

er

-o
th

er

+I
N

F

-IN
F

+other

-other

+INF

qN
aN

qN
aN

qN
aN

qN
aN

qN
aN

qN
aN

-INF

qN
aN

qN
aN

qN
aN

qN
aN

qN
aN

qN
aN

292 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FMAC Special Cases (continued):

If the result of the previous table is a qNaN, no further analysis is performed. In all
other cases, fr0 and op1 are multiplied:

The empty cells in this table correspond to cases that have already been dealt with.
If either source is denormalized, no further analysis is performed. In the
‘FULLMUL’ case, a multiplication is performed without loss of precision. There is
no rounding nor overflow, and this multiplication cannot produce an intermediate
infinity.

In the ‘FULLMUL’, +0, -0, +INF and -INF cases, the 2 addition operands (fr0*op1
and op2) are summed:

The two empty cells in this table correspond to cases that have already been dealt
with. In the ‘FULLADD’ cases the fully-precise addition intermediate is rounded to
give a single-precision result.

fr0 →
↓ op1

+NORM,
-NORM

+0 -0 +INF -INF +DNORM,
-DNORM

+,-NORM FULLMUL +0, -0 -0, +0 +INF, -INF -INF, +INF n/a

+0 +0, -0 +0 -0 n/a

-0 -0, +0 -0 +0 n/a

+INF +INF, -INF +INF -INF n/a

-INF -INF, +INF -INF +INF n/a

+, -DNORM n/a n/a n/a n/a n/a n/a

(fr0*op1)→
↓ op2

FULLMUL +0 -0 +INF -INF

+,-NORM FULLADD op2 op2 +INF -INF

+0 FULLADD +0 +0 +INF -INF

-0 FULLADD +0 -0 +INF -INF

+INF +INF +INF +INF +INF

-INF -INF -INF -INF -INF

+, -DNORM n/a n/a n/a n/a n/a

Alphabetical list of instructions 293
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

In the above tables, FPU error is indicated by heavy shading and always raises an
exception. Invalid operations are indicated by light shading and raise an exception if
enabled. FPU disabled, inexact, underflow and overflow cases are not shown.

294 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FMOV DRm, DRn
Description

This floating-point instruction reads a pair of single-precision floating-point values
from DRm and copies them to DRn. This is a bit-by-bit copy with no interpretation or
conversion of the values.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Operation

Exceptions

SLOTFPUDIS, FPUDIS

FMOV DRm, DRn

1111 n 0 m 01100

15 12 11 9 8 7 5 4 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend32(SR);
op1 ← FloatValuePair32(FP2m);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2 ← op1;
FP2n ← FloatRegisterPair32(op2);

Alphabetical list of instructions 295
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FMOV DRm, XDn
Description

This floating-point instruction reads a pair of single-precision floating-point values
from DRm and copies them to XDn. This is a bit-by-bit copy with no interpretation or
conversion of the values.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Operation

Exceptions

SLOTFPUDIS, FPUDIS

FMOV DRm, XDn

1111 n 1 m 01100

15 12 11 9 8 7 5 4 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend32(SR);
op1 ← FloatValuePair32(DR2m);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2 ← op1;
XD2n ← FloatRegisterPair32(op2);

296 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FMOV DRm, @Rn
Description

This floating-point instruction stores a pair of single-precision floating-point
registers to memory using register indirect with zero-displacement addressing. DRm
is written as two consecutive 32-bit values to the effective address specified in Rn

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

FMOV DRm, @Rn

1111 n m 01010

15 12 11 8 7 5 4 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValuePair32(FP2m);
op2 ← SignExtend32(Rn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend32(op2);
WriteMemoryPair32(address, op1);

Alphabetical list of instructions 297
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FMOV DRm, @-Rn
Description

This floating-point instruction stores a pair of single-precision floating-point
registers to memory using register indirect with pre-decrement addressing. Rn is
pre-decremented by 8 to give the effective address. DRm is written as two
consecutive 32-bit values to the effective address.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Operation

FMOV DRm, @-Rn

1111 n m 01011

15 12 11 8 7 5 4 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValuePair32(FP2m);
op2 ← SignExtend32(Rn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend32(op2 - 8);
WriteMemoryPair32(address, op1);
op2 ← address;
Rn ← Register(op2);

298 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Exceptions

SLOTFPUDIS, FPUDIS, WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

Alphabetical list of instructions 299
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FMOV DRm, @(R0, Rn)
Description

This floating-point instruction stores a pair of single-precision floating-point
registers to memory using register indirect addressing. The effective address is
formed by adding R0 to Rn. DRm is written as two consecutive 32-bit values to the
effective address.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

FMOV DRm, @(R0, Rn)

1111 n m 00111

15 12 11 8 7 5 4 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend32(SR);
r0 ← SignExtend32(R0);
op1 ← FloatValuePair32(FP2m);
op2 ← SignExtend32(Rn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend32(r0 + op2);
WriteMemoryPair32(address, op1);

300 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FMOV.S FRm, FRn
Description

This floating-point instruction reads a single-precision floating-point value from
FRm and copies it to FRn. This is a bit-by-bit copy with no interpretation or
conversion of the value.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Operation

Exceptions

SLOTFPUDIS, FPUDIS

FMOV.S FRm, FRn

1111 n m 1100

15 12 11 8 7 4 3 0

Available only when SZ=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue32(FRm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2 ← op1;
FRn ← FloatRegister32(op2);

Alphabetical list of instructions 301
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FMOV.S FRm, @Rn
Description

This floating-point instruction stores a single-precision floating-point register to
memory using register indirect with zero-displacement addressing. The 32-bit value
of FRm is written to the effective address specified in Rn

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

FMOV.S FRm, @Rn

1111 n m 1010

15 12 11 8 7 4 3 0

Available only when SZ=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue32(FRm);
op2 ← SignExtend32(Rn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend32(op2);
WriteMemory32(address, op1);

302 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FMOV.S FRm, @-Rn
Description

This floating-point instruction stores a single-precision floating-point register to
memory using register indirect with pre-decrement addressing. Rn is
pre-decremented by 4 to give the effective address. The 32-bit value of FRm is
written to the effective address.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Operation

FMOV.S FRm, @-Rn

1111 n m 1011

15 12 11 8 7 4 3 0

Available only when SZ=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue32(FRm);
op2 ← SignExtend32(Rn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend32(op2 - 4);
WriteMemory32(address, op1);
op2 ← address;
Rn ← Register(op2);

Alphabetical list of instructions 303
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Exceptions

SLOTFPUDIS, FPUDIS, WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

304 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FMOV.S FRm, @(R0, Rn)
Description

This floating-point instruction stores a single-precision floating-point register to
memory using register indirect addressing. The effective address is formed by
adding R0 to Rn. The 32-bit value of FRm is written to the effective address.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

FMOV.S FRm, @(R0, Rn)

1111 n m 0111

15 12 11 8 7 4 3 0

Available only when SZ=0

sr ← ZeroExtend32(SR);
r0 ← SignExtend32(R0);
op1 ← FloatValue32(FRm);
op2 ← SignExtend32(Rn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend32(r0 + op2);
WriteMemory32(address, op1);

Alphabetical list of instructions 305
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FMOV XDm, DRn
Description

This floating-point instruction reads a pair of single-precision floating-point values
from XDm and copies them to DRn. This is a bit-by-bit copy with no interpretation or
conversion of the values.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Operation

Exceptions

SLOTFPUDIS, FPUDIS

FMOV XDm, DRn

1111 n 0 m 11100

15 12 11 9 8 7 5 4 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValuePair32(XD2m);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2 ← op1;
DR2n ← FloatRegisterPair32(op2);

306 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FMOV XDm, XDn
Description

This floating-point instruction reads a pair of single-precision floating-point values
from XDm and copies them to XDn. This is a bit-by-bit copy with no interpretation or
conversion of the values.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Operation

Exceptions

SLOTFPUDIS, FPUDIS

FMOV XDm, XDn

1111 n 1 m 11100

15 12 11 9 8 7 5 4 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue64(XD2m);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2 ← op1;
XD2n ← FloatRegister64(op2);

Alphabetical list of instructions 307
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FMOV XDm, @Rn
Description

This floating-point instruction stores a pair of single-precision floating-point
registers to memory using register indirect with zero-displacement addressing. XDm
is written as two consecutive 32-bit values to the effective address specified in Rn

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

FMOV XDm, @Rn

1111 n m 11010

15 12 11 8 7 5 4 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValuePair32(XD2m);
op2 ← SignExtend32(Rn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend32(op2);
WriteMemoryPair32(address, op1);

308 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FMOV XDm, @-Rn
Description

This floating-point instruction stores a pair of single-precision floating-point
registers to memory using register indirect with pre-decrement addressing. Rn is
pre-decremented by 8 to give the effective address. XDm is written as two
consecutive 32-bit values to the effective address.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Operation

FMOV XDm, @-Rn

1111 n m 11011

15 12 11 8 7 5 4 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValuePair32(XD2m);
op2 ← SignExtend32(Rn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend32(op2 - 8);
WriteMemoryPair32(address, op1);
op2 ← address;
Rn ← Register(op2);
FPSCR ← ZeroExtend32(fps);

Alphabetical list of instructions 309
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Exceptions

SLOTFPUDIS, FPUDIS, WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

310 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FMOV XDm, @(R0, Rn)
Description

This floating-point instruction stores a pair of single-precision floating-point
registers to memory using register indirect addressing. The effective address is
formed by adding R0 to Rn. XDm is written as two consecutive 32-bit values to the
effective address.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

FMOV XDm, @(R0, Rn)

1111 n m 10111

15 12 11 8 7 5 4 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend32(SR);
r0 ← SignExtend32(R0);
op1 ← FloatValuePair32(XD2m);
op2 ← SignExtend32(Rn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend32(r0 + op2);
WriteMemoryPair32(address, op1);

Alphabetical list of instructions 311
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FMOV @Rm, DRn
Description

This floating-point instruction loads a pair of single-precision floating-point
registers from memory using register indirect with zero-displacement addressing.
Two consecutive 32-bit values are read from the effective address specified in Rm
and loaded into DRn.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, RADDERR, RTLBMISS, READPROT

Note

FMOV @Rm, DRn

1111 n 0 m 1000

15 12 11 9 8 7 4 3 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend32(SR);
op1 ← SignExtend32(Rm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend32(op1);
op2 ← ReadMemoryPair32(address);
FP2n ← FloatRegisterPair32(op2);

312 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FMOV @Rm+, DRn
Description

This floating-point instruction loads a pair of single-precision floating-point
registers from memory using register indirect with post-increment addressing. Two
consecutive 32-bit values are read from the effective address specified in Rm and
loaded into DRn. Rm is post-incremented by 8.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, RADDERR, RTLBMISS, READPROT

Note

FMOV @Rm+, DRn

1111 n 0 m 1001

15 12 11 9 8 7 4 3 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← SignExtend32(Rm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend32(op1);
op2 ← ReadMemoryPair32(address);
op1 ← op1 + 8;
Rm ← Register(op1);
FP2n ← FloatRegisterPair32(op2);

Alphabetical list of instructions 313
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FMOV @(R0, Rm), DRn
Description

This floating-point instruction loads a pair of single-precision floating-point
registers from memory using register indirect addressing. The effective address is
formed by adding R0 to Rn. Two consecutive 32-bit values are read from the effective
address and loaded into DRn.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, RADDERR, RTLBMISS, READPROT

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

FMOV @(R0, Rm), DRn

1111 n 0 m 0110

15 12 11 9 8 7 4 3 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend32(SR);
r0 ← SignExtend32(R0);
op1 ← SignExtend32(Rm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend32(r0 + op1);
op2 ← ReadMemoryPair32(address);
FP2n ← FloatRegisterPair32(op2);

314 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FMOV.S @Rm, FRn
Description

This floating-point instruction loads a single-precision floating-point register from
memory using register indirect with zero-displacement addressing. A 32-bit value is
read from the effective address specified in Rm and loaded into FRn.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, RADDERR, RTLBMISS, READPROT

Note

FMOV.S @Rm, FRn

1111 n m 1000

15 12 11 8 7 4 3 0

Available only when SZ=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← SignExtend32(Rm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend32(op1);
op2 ← ReadMemory32(address);
FR2n ← FloatRegister32(op2);

Alphabetical list of instructions 315
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FMOV.S @Rm+, FRn
Description

This floating-point instruction loads a single-precision floating-point register from
memory using register indirect with post-increment addressing. A 32-bit value is
read from the effective address specified in Rm and loaded into FRn. Rm is
post-incremented by 4.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, RADDERR, RTLBMISS, READPROT

Note

FMOV.S @Rm+, FRn

1111 n m 1001

15 12 11 8 7 4 3 0

Available only when SZ=0

sr ← ZeroExtend32(SR);
op1 ← SignExtend32(Rm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend32(op1);
op2 ← ReadMemory32(address);
op1 ← op1 + 4;
Rm ← Register(op1);
FRn ← FloatRegister32(op2);

316 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FMOV.S @(R0, Rm), FRn
Description

This floating-point instruction loads a single-precision floating-point register from
memory using register indirect addressing. The effective address is formed by
adding R0 to Rn. A 32-bit value is read from the effective address and loaded into
FRn.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, RADDERR, RTLBMISS, READPROT

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

FMOV.S @(R0, Rm), FRn

1111 n m 0110

15 12 11 8 7 4 3 0

Available only when SZ=0

sr ← ZeroExtend32(SR);
r0 ← SignExtend32(R0);
op1 ← SignExtend32(Rm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend32(r0 + op1);
op2 ← ReadMemory32(address);
FRn ← FloatRegister32(op2);

Alphabetical list of instructions 317
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FMOV @Rm, XDn
Description

This floating-point instruction loads a pair of single-precision floating-point
registers from memory using register indirect with zero-displacement addressing.
Two consecutive 32-bit values are read from the effective address specified in Rm
and loaded into XDn.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, RADDERR, RTLBMISS, READPROT

Note

FMOV @Rm, XDn

1111 n 1 m 1000

15 12 11 9 8 7 4 3 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← SignExtend32(Rm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend32(op1);
op2 ← ReadMemoryPair32(address);
XD2n ← FloatRegisterPair32(op2);

318 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FMOV @Rm+, XDn
Description

This floating-point instruction loads a pair of single-precision floating-point
registers from memory using register indirect with post-increment addressing. Two
consecutive 32-bit values are read from the effective address specified in Rm and
loaded into XDn. Rm is post-incremented by 8.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, RADDERR, RTLBMISS, READPROT

Note

FMOV @Rm+, XDn

1111 n 1 m 1001

15 12 11 9 8 7 4 3 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← SignExtend32(Rm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend32(op1);
op2 ← ReadMemoryPair32(address);
op1 ← op1 + 8;
Rm ← Register(op1);
XD2n ← FloatRegisterPair32(op2);

Alphabetical list of instructions 319
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FMOV @(R0, Rm), XDn
Description

This floating-point instruction loads a pair of single-precision floating-point
registers from memory using register indirect addressing. The effective address is
formed by adding R0 to Rn. Two consecutive 32-bit values are read from the effective
address and loaded into XDn.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, RADDERR, RTLBMISS, READPROT

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

FMOV @(R0, Rm), XDn

1111 n 1 m 0110

15 12 11 9 8 7 4 3 0

Available only when PR=0 and SZ=1

sr ← ZeroExtend32(SR);
r0 ← SignExtend32(R0);
op1 ← SignExtend32(Rm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend32(r0 + op1);
op2 ← ReadMemoryPair32(address);
XD2n ← FloatRegisterPair32(op2);

320 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FMUL DRm, DRn
Description

This floating-point instruction performs a double-precision floating-point
multiplication. It multiplies DRm by DRn and places the result in DRn. The
rounding mode is determined by FPSCR.RM.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, FPUEXC

FMUL DRm, DRn

1111 n 0 m 00010

15 12 11 9 8 7 5 4 0

Available only when PR=1 and SZ=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue64(DR2m);
op2 ← FloatValue64(DR2n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2, fps ← FMUL_D(op1, op2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
DR2n ← FloatRegister64(op2);
FPSCR ← ZeroExtend32(fps);

Alphabetical list of instructions 321
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FMUL FRm, FRn
Description

This floating-point instruction performs a single-precision floating-point
multiplication. It multiplies FRm by FRn and places the result in FRn. The rounding
mode is determined by FPSCR.RM.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, FPUEXC

FMUL FRm, FRn

1111 n m 0010

15 12 11 8 7 4 3 0

Available only when PR=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue32(FRm);
op2 ← FloatValue32(FRn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2, fps ← FMUL_S(op1, op2, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
FRn ← FloatRegister32(op2);
FPSCR ← ZeroExtend32(fps);

322 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FMUL Special Cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if either input is a signaling NaN, or if
this is a multiplication of a zero by an infinity.

3 Error: an FPU error is signaled if FPSCR.DN is zero, neither input is a NaN and
either input is a denormalized number.

4 Inexact, underflow and overflow: these are checked together and can be signaled
in combination. When inexact, underflow or overflow exceptions are requested
by the user, an exception is always raised regardless of whether that condition
arose.

If the instruction does not raise an exception, a result is generated according to the
following table.

FPU error is indicated by heavy shading and always raises an exception. Invalid
operations are indicated by light shading and raise an exception if enabled. FPU
disabled, inexact, underflow and overflow cases are not shown.

The behavior of the normal ‘MUL’ case is described by the IEEE754 specification.

op1 →
↓ op2

+NORM,
-NORM

+0 -0 +INF -INF +DNORM,
-DNORM

qNaN sNaN

+,-NORM MUL +0, -0 -0, +0 +INF, -INF -INF, +INF n/a qNaN qNaN

+0 +0, -0 +0 -0 qNaN qNaN n/a qNaN qNaN

-0 -0, +0 -0 +0 qNaN qNaN n/a qNaN qNaN

+INF +INF, -INF qNaN qNaN +INF -INF n/a qNaN qNaN

-INF -INF, +INF qNaN qNaN -INF +INF n/a qNaN qNaN

+, -DNORM n/a n/a n/a n/a n/a n/a qNaN qNaN

qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

sNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

Alphabetical list of instructions 323
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FNEG DRn
Description

This floating-point instruction computes the negated value of a double-precision
floating-point number. It reads DRn, inverts the sign bit and places the result in
DRn.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Operation

Exceptions

SLOTFPUDIS, FPUDIS

FNEG DRn

1111 n 001001101

15 12 11 9 8 0

Available only when PR=1 and SZ=0

sr ← ZeroExtend32(SR);
op1 ← FloatValue64(DR2n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1 ← FNEG_D(op1);
DR2n ← FloatRegister64(op1);

324 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FNEG FRn
Description

This floating-point instruction computes the negated value of a single-precision
floating-point number. It FRn, inverts the sign bit and places the result in FRn.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations. There are no special floating-point cases for this instruction.

Operation

Exceptions

SLOTFPUDIS, FPUDIS

FNEG FRn

1111 n 01001101

15 12 11 8 7 0

Available only when PR=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue32(FRn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1 ← FNEG_S(op1);
FRn ← FloatRegister32(op1);

Alphabetical list of instructions 325
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FRCHG
Description

This floating-point instruction toggles the FPSCR.FR bit. This has the effect of
switching the basic and extended banks of the floating-point register file.

Operation

Exceptions

SLOTFPUDIS, FPUDIS

FRCHG

1111101111111101

15 0

Available only when PR=0

sr ← ZeroExtend32(SR);
fr ← ZeroExtend1(SR.FR);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
fr ← fr ⊕ 1;
SR.FR ← Bit(fr);

326 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FSCHG
Description

This floating-point instruction toggles the FPSCR.SZ bit. This has the effect of
changing the size of the data transfer for subsequent floating-point loads, stores and
moves. Two transfer sizes are available: FPSCR.SZ = 0 indicates 32-bit transfer and
FPSCR.SZ = 1 indicates 64-bit transfer.

Operation

Exceptions

SLOTFPUDIS, FPUDIS

FSCHG

1111001111111101

15 0

Available only when PR=0

sr ← ZeroExtend32(SR);
sz ← ZeroExtend1(SR.SZ);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
sz ← sz ⊕ 1;
SR.SZ ← Bit(sz);

Alphabetical list of instructions 327
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FSQRT DRn
Description

This floating-point instruction performs a double-precision floating-point square
root. It extracts the square root of DRn and places the result in DRn. The rounding
mode is determined by FPSCR.RM.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, FPUEXC

FSQRT DRn

1111 n 001101101

15 12 11 9 8 0

Available only when PR=1 and SZ=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue64(DR2n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1, fps ← FSQRT_D(op1, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF (FpuEnableI(fps))

THROW FPUEXC, fps;
DR2n ← FloatRegister64(op1);
FPSCR ← ZeroExtend32(fps);

328 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FSQRT FRn
Description

This floating-point instruction performs a single-precision floating-point square
root. It extracts the square root of FRn and places the result in FRn. The rounding
mode is determined by FPSCR.RM.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, FPUEXC

FSQRT FRn

1111 n 01101101

15 12 11 8 7 0

Available only when PR=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue32(FRn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1, fps ← FSQRT_S(op1, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF (FpuEnableI(fps))

THROW FPUEXC, fps;
FRn ← FloatRegister32(op1);
FPSCR ← ZeroExtend32(fps);

Alphabetical list of instructions 329
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FSQRT Special Cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if the input is a signaling NaN, or if this
is a square root of a number less than zero (including negative infinity and nega-
tive normalized/denormalized numbers, but excluding negative zero).

3 Error: an FPU error is signaled if FPSCR.DN is zero and the input is a positive
denormalized number.

4 Inexact: only inexact is checked. When inexact exceptions are requested by the
user, an exception is always raised regardless of whether that condition arose.
Overflow and underflow do not occur.

If the instruction does not raise an exception, a result is generated according to the
following table.

FPU error is indicated by heavy shading and always raises an exception. Invalid
operations are indicated by light shading and raise an exception if enabled. FPU
disabled and inexact cases are not shown.

The behavior of the normal ‘SQRT’ case is described by the IEEE754 specification.

op1 → +NORM -NORM +0 -0 +INF -INF +DNORM -DNORM qNaN sNaN

SQRT qNaN +0 -0 +INF qNaN n/a qNaN qNaN qNaN

330 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FSTS FPUL, FRn
Description

This floating-point instruction copies FPUL to FRn.

This instruction is not considered an arithmetic operation, and it does not signal
invalid operations.

Operation

Exceptions

SLOTFPUDIS, FPUDIS

FSTS FPUL, FRn

1111 n 00001101

15 12 11 8 7 0

sr ← ZeroExtend32(SR);
fpul ← SignExtend32(FPUL);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1 ← fpul;
FRn ← FloatRegister32(op1);

Alphabetical list of instructions 331
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FSUB DRm, DRn
Description

This floating-point instruction performs a double-precision floating-point
subtraction. It subtracts DRm from DRn and places the result in DRn. The rounding
mode is determined by FPSCR.RM.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, FPUEXC

FSUB DRm, DRn

1111 n 0 m 00001

15 12 11 9 8 7 5 4 0

Available only when PR=1 and SZ=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue64(DR2m);
op2 ← FloatValue64(DR2n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2, fps ← FSUB_D(op2, op1, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
DR2n ← FloatRegister64(op2);
FPSCR ← ZeroExtend32(fps);

332 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FSUB FRm, FRn
Description

This floating-point instruction performs a single-precision floating-point
subtraction. It subtracts FRm from FRn and places the result in FRn. The rounding
mode is determined by FPSCR.RM.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, FPUEXC

FSUB FRm, FRn

1111 n m 0001

15 12 11 8 7 4 3 0

Available only when PR=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue32(FRm);
op2 ← FloatValue32(FRn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op2, fps ← FSUB_S(op2, op1, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
IF (FpuCauseE(fps))

THROW FPUEXC, fps;
IF ((FpuEnableI(fps) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
FRn ← FloatRegister32(op2);
FPSCR ← ZeroExtend32(fps);

Alphabetical list of instructions 333
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FSUB Special Cases:

When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied before
exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if either input is a signaling NaN, or if
the inputs are similarly signed infinities.

3 Error: an FPU error is signaled if FPSCR.DN is zero, neither input is a NaN and
either input is a denormalized number.

4 Inexact, underflow and overflow: these are checked together and can be signaled
in combination. When inexact, underflow or overflow exceptions are requested
by the user, an exception is always raised regardless of whether that condition
arose.

If the instruction does not raise an exception, a result is generated according to the
following table.

FPU error is indicated by heavy shading and always raises an exception. Invalid
operations are indicated by light shading and raise an exception if enabled. FPU
disabled, inexact, underflow and overflow cases are not shown.

The behavior of the normal ‘SUB’ case is described by the IEEE754 specification.

op2 →
↓ op1

+NORM,
-NORM

+0 -0 +INF -INF +DNORM,
-DNORM

qNaN sNaN

+,-NORM SUB SUB SUB +INF -INF n/a qNaN qNaN

+0 op2 +0 -0 +INF -INF n/a qNaN qNaN

-0 op2 +0 +0 +INF -INF n/a qNaN qNaN

+INF -INF -INF -INF qNaN -INF n/a qNaN qNaN

-INF +INF +INF +INF +INF qNaN n/a qNaN qNaN

+, -DNORM n/a n/a n/a n/a n/a n/a qNaN qNaN

qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

sNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

334 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FTRC DRm, FPUL
Description

This floating-point instruction performs a double-precision floating-point to signed
32-bit integer conversion. It reads a double-precision value from DRm, converts it to
a signed 32-bit integral range and places the result in FPUL. The conversion is
achieved by rounding to zero (truncation) with saturation to the limits of the target
signed integral range. The value of FPSCR.RM is ignored.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, FPUEXC

FTRC DRm, FPUL

1111 m 000111101

15 12 11 9 8 0

Available only when PR=1 and SZ=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue64(DR2m);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
fpul, fps ← FTRC_DL(op1, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
FPUL ← ZeroExtend32(fpul);
FPSCR ← ZeroExtend32(fps);

Alphabetical list of instructions 335
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FTRC FRm, FPUL
Description

This floating-point instruction performs a single-precision floating-point to signed
32-bit integer conversion. It reads a single-precision value from FRm, converts it to a
signed 32-bit integral range and places the result in FPUL. The conversion is
achieved by rounding to zero (truncation) with saturation to the limits of the target
signed integral range. The value of FPSCR.RM is ignored.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, FPUEXC

FTRC Special Cases:

Regardless of FPSCR.DN, denormalized numbers are treated as 0. These
instructions do not cause FPU Error.

FTRC FRm, FPUL

1111 m 00111101

15 12 11 8 7 0

Available only when PR=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← FloatValue32(FRm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
fpul, fps ← FTRC_SL(op1, fps);
IF (FpuEnableV(fps) AND FpuCauseV(fps))

THROW FPUEXC, fps;
FPSCR ← ZeroExtend32(fps);
FPUL ← ZeroExtend32(fpul);

336 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if the conversion overflows the target
range. This is caused by out-of-range normalized numbers, infinities and NaNs.

If the instruction does not raise an exception, a result is generated according to the
following table.

Invalid operations are indicated by light shading and raise an exception if enabled.
FPU disabled cases are not shown.

The behavior of the normal ‘TRC’ case is described by the IEEE754 specification,
though only the round to zero rounding mode is supported by this instruction.

op1 → +NORM

(in range)

-NORM

(in range)

+0 -0 +INF or

+NORM
(out of
range)

-INF or

-NORM
(out of
range)

+DNORM,
-DNORM

qNaN sNaN

TRC TRC 0 0 +231 - 1 -231 0 -231 -231

Alphabetical list of instructions 337
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FTRV XMTRX, FVn
Description

This floating-point instruction multiplies the matrix, XMTRX, with a vector, FVn,
and places the resulting vector in FVn. The matrix contains sixteen single-precision
floating-point values. The vector contains four single-precision floating-point
values. The matrix-vector multiplication is specified as:

FRn =

FRn+1 =

FRn+2 =

FRn+3 =

This is an approximate computation. The specified error in the pth. element value of
the result vector:

spec_errorp =

where

rm =

E = unbiased exponent value of the result

ez < -252

epm = max (ep0, ep1, ep2, ep3)

epi = pre-normalized exponent of the product XFp+ix4 and FRn+i

XF
i 4× FR

n i+×
i 0=

3

∑

XF
1 i 4×+ FR

n i+×
i 0=

3

∑

XF
2 i 4×+ FR

n i+×
i 0=

3

∑

XF
3 i 4×+ FR

n i+×
i 0=

3

∑

0 if epm ez=()

2
epm 24–

2
E 24– rm+

+ if epm ez≠()



0 if round to– nearest–()
1 if round to– zero–()




338 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

eXFp+ix4 = biased exponent value of XFp+ix4

eFRn+i = biased exponent value of FRn+i

epi =

Operation

Exceptions

SLOTFPUDIS, FPUDIS, FPUEXC

FTRV Special Cases:

FTRV is an approximate instruction. Denormalized numbers are supported:

• When FPSCR.DN is 0, denormalized numbers are treated as their denormalized
value in the FTRV.S calculation. This instruction never signals an FPU error.

ez if XF
p i 4×+ 0.0=()OR FR

n i+ 0.0=()()

max eXF
p i 4×+ 1(,) max eFR

n i+ 1(,) 254–+ otherwise



FTRV XMTRX, FVn

1111 n 0111111101

15 12 11 10 9 0

Available only when PR=0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
xmtrx ← FloatValueMatrix32(XMTRX);
op1 ← FloatValueVector32(FV4n);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1, fps ← FTRV_S(xmtrx, op1, fps);
IF (((FpuEnableV(fps) OR FpuEnableI(fps)) OR FpuEnableO(fps)) OR FpuEnableU(fps))

THROW FPUEXC, fps;
FV4n ← FloatRegisterVector32(op1);
FPSCR ← ZeroExtend32(fps);

Alphabetical list of instructions 339
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

• When FPSCR.DN is 1, a positive denormalized number is treated as +0 and a
negative denormalized number as -0. This flush-to-zero treatment is applied
before exception detection and special case handling.

Exceptional conditions are checked in the order given below. Execution of the
instruction is terminated once any check detects an exceptional condition.

1 Disabled: an exception is raised if the FPU is disabled.

2 Invalid: an invalid operation is signaled if any of the inputs is a signaling NaN,
there is a multiplication of a zero by an infinity, or there is an addition of differ-
ently signed infinities where none of the inputs is a qNaN.

The multiplication is performed with sufficient precision to avoid overflow, and
therefore the multiplication of any two finite numbers does not produce an
infinity. The multiplication result will be an infinity only if there is a
multiplication of an infinity with a normalized number, an infinity with a
denormalized number or an infinity with an infinity.

The addition of differently signed infinities is detected if there is (at least) one
positive infinity and (at least) one negative infinity in the set of 4 multiplication
results in any of the 4 inner-products calculated by this instruction.

This instruction is not capable of checking its inputs for invalid operations and
raising an invalid operation exception accordingly. Instead, this instruction
always raises an invalid operation exception if this exception is requested by the
user. If this exception is not requested by the user, then qNaN results are
correctly produced for invalid operations as described above.

3 Inexact, underflow and overflow: these are checked together and can be signaled
in combination. This is an approximate instruction and inexact is signaled
except where special cases occur. Precise details of the approximate inner-prod-
uct algorithm, including the detection of underflow and overflow cases, are
implementation dependent. When inexact, underflow or overflow exceptions are
requested by the user, an exception is always raised regardless of whether that
condition arose.

If the instruction does not raise an exception, results are generated according to the
following tables. The special case tables are applied separately with the appropriate
vector operands to each of the four inner-products calculated by this instruction.

340 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FTRV Special Cases (continued):

Each of the 4 pairs of multiplication operands (op1 and op2) is selected from
corresponding elements of the two 4-element source vectors and multiplied:

If any of the multiplications evaluates to qNaN, then the result of the instruction is
qNaN and no further analysis need be performed. In the ‘FTRVMUL’, +0, -0, +INF
and -INF cases, the 4 addition operands (labelled intermediate 0 to 3) are summed:

Inexact is signaled in the ‘FTRVADD’ case. Exception cases are not indicated by
shading for this instruction. Where the behavior is not a special case, the instruction
computes an approximate result using an implementation-dependent algorithm.

op1 →
↓ op2

+,-NORM,
+,-DENORM

+0 -0 +INF -INF qNaN sNaN

+,-NORM +,-DENORM FTRVMUL +0, -0 -0, +0 +INF, -INF -INF, +INF qNaN qNaN

+0 +0, -0 +0 -0 qNaN qNaN qNaN qNaN

-0 -0, +0 -0 +0 qNaN qNaN qNaN qNaN

+INF +INF, -INF qNaN qNaN +INF -INF qNaN qNaN

-INF -INF, +INF qNaN qNaN -INF +INF qNaN qNaN

qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

sNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

intermediate 0 → FTRVMUL, +0, -0 +INF -INF

↓ intermediate 2

intermediate 1→

↓ intermediate 3

FTRVMUL,
+0, -0

+INF -INF FTRVMUL,
+0, -0

+INF -INF FTRVMUL,
+0, -0

+INF -INF

FTRVMUL,
+0, -0

FTRVMUL, +0, -0 FTRVADD +INF -INF +INF +INF qNaN -INF qNaN -INF

+INF +INF +INF qNaN +INF +INF qNaN qNaN qNaN qNaN

-INF -INF qNaN -INF qNaN qNaN qNaN -INF qNaN -INF

+INF FTRVMUL, +0, -0 +INF +INF qNaN +INF +INF qNaN qNaN qNaN qNaN

+INF +INF +INF qNaN +INF +INF qNaN qNaN qNaN qNaN

-INF qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

-INF FTRVMUL, +0, -0 -INF qNaN -INF qNaN qNaN qNaN -INF qNaN -INF

+INF qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN qNaN

-INF -INF qNaN -INF qNaN qNaN qNaN -INF qNaN -INF

Alphabetical list of instructions 341
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

JMP @Rn
Description

This instruction is a delayed unconditional branch used for jumping to the target
address specified in Rn.

Operation

Exceptions

ILLSLOT

Note

The delay slot is executed before branching. An ILLSLOT exception is raised if this
instruction is executed in a delay slot.

If the branch target address is invalid then IADDERR trap is not delivered until
after the instruction in the delay slot has executed and the PC has advanced to the
target address, that is the exception is associated with the target instruction not the
branch.

JMP @Rn

0100 n 00101011

15 12 11 8 7 0

op1 ← SignExtend32(Rn);
IF (IsDelaySlot())

THROW ILLSLOT;
target ← op1;
delayedpc ← target ∧ (~ 0x1);
PC’’ ← Register(delayedpc);

342 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

JSR @Rn
Description

This instruction is a delayed unconditional branch used for jumping to the
subroutine starting at the target address specified in Rn. The address of the
instruction immediately following the delay slot is copied to PR to indicate the
return address.

Operation

Exceptions

ILLSLOT

Note

The delay slot is executed before branching and before PR is updated. An ILLSLOT
exception is raised if this instruction is executed in a delay slot.

If the branch target address is invalid then IADDERR trap is not delivered until
after the instruction in the delay slot has executed and the PC has advanced to the
target address, that is the exception is associated with the target instruction not the
branch.

JSR @Rn

0100 n 00001011

15 12 11 8 7 0

pc ← SignExtend32(PC);
op1 ← SignExtend32(Rn);
IF (IsDelaySlot())

THROW ILLSLOT;
delayedpr ← pc + 4;
target ← op1;
delayedpc ← target ∧ (~ 0x1);
PR’’ ← Register(delayedpr);
PC’’ ← Register(delayedpc);

Alphabetical list of instructions 343
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

LDC Rm, GBR
Description

This instruction copies Rm to GBR.

Operation

Note

LDC Rm, GBR

0100 m 00011110

15 12 11 8 7 0

op1 ← SignExtend32(Rm);
gbr ← op1;
GBR ← Register(gbr);

344 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

LDC Rm, SR
Description

This instruction copies Rm to SR, it is a privileged instruction.

Operation

Exceptions

RESINST

Note

LDC Rm, SR

0100 m 00001110

15 12 11 8 7 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

op1 ← SignExtend32(Rm);
sr ← op1;
SR ← Register(sr);

Alphabetical list of instructions 345
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

LDC Rm, VBR
Description

This instruction copies Rm to VBR, it is a privileged instruction.

Operation

Exceptions

RESINST

Note

LDC Rm, VBR

0100 m 00101110

15 12 11 8 7 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

op1 ← SignExtend32(Rm);
vbr← op1;
VBR ← Register(vbr);

346 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

LDC Rm, SSR
Description

This instruction copies Rm to SSR, it is a privileged instruction.

Operation

Exceptions

RESINST

Note

LDC Rm, SSR

0100 m 00111110

15 12 11 8 7 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

op1 ← SignExtend32(Rm);
ssr ← op1;
SSR ← Register(ssr);

Alphabetical list of instructions 347
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

LDC Rm, SPC
Description

This instruction copies Rm to SPC, it is a privileged instruction.

Operation

Exceptions

RESINST

Note

LDC Rm, SPC

0100 m 01001110

15 12 11 8 7 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

op1 ← SignExtend32(Rm);
spc ← op1;
SPC ← Register(spc);

348 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

LDC Rm, DBR
Description

This instruction copies Rm to DBR, it is a privileged instruction.

Operation

Exceptions

RESINST

Note

LDC Rm, SPC

0100 m 11111010

15 12 11 8 7 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

op1 ← SignExtend32(Rm);
dbr← op1;
DBR ← Register(dbr);

Alphabetical list of instructions 349
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

LDC Rm, Rn_BANK
Description

This instruction copies Rm to Rn_BANK, it is a privileged instruction.

Operation

Exceptions

RESINST

Note

LDC Rm, Rn_BANK

0100 m 1 n 1110

15 12 11 8 7 6 4 3 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

op1 ← SignExtend32(Rm);
rn_bank← op1;
Rn_BANK ← Register(rn_bank);

350 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

LDC.L @Rm+, GBR
Description

This instruction loads GBR from memory using register indirect with
post-increment addressing. A 32-bit value is read from the effective address
specified in Rm and loaded into GBR. Rm is post-incremented by 4.

Operation

Exceptions

RADDERR, RTLBMISS, READPROT

Note

LDC.L @Rm+, GBR

0100 m 00010111

15 12 11 8 7 0

op1 ← SignExtend32(Rm);
address ← ZeroExtend32(op1);
gbr ← SignExtend32(ReadMemory32(address));
op1 ← op1 + 4;
Rm ← Register(op1);
GBR ← Register(gbr);

Alphabetical list of instructions 351
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

LDC.L @Rm+, SR
Description

This instruction loads SR from memory using register indirect with post-increment
addressing. A 32-bit value is read from the effective address specified in Rm and
loaded into SR. Rm is post-incremented by 4. This is a privileged instruction.

Operation

Exceptions

RESINST, RADDERR, RTLBMISS, READPROT

Note

LDC.L @Rm+, SR

0100 m 00000111

15 12 11 8 7 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

op1 ← SignExtend32(Rm);
address ← ZeroExtend32(op1);
sr ← SignExtend32(ReadMemory32(address));
op1 ← op1 + 4;
Rm ← Register(op1);
SR ← Register(sr);

352 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

LDC.L @Rm+, VBR
Description

This instruction loads VBR from memory using register indirect with
post-increment addressing. A 32-bit value is read from the effective address
specified in Rm and loaded into VBR. Rm is post-incremented by 4. This is a
privileged instruction.

Operation

Exceptions

RESINST, RADDERR, RTLBMISS, READPROT

Note

LDC.L @Rm+, VBR

0100 m 00100111

15 12 11 8 7 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

op1 ← SignExtend32(Rm);
address ← ZeroExtend32(op1);
vbr ← SignExtend32(ReadMemory32(address));
op1 ← op1 + 4;
Rm ← Register(op1);
VBR ← Register(vbr);

Alphabetical list of instructions 353
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

LDC.L @Rm+, SSR
Description

This instruction loads SSR from memory using register indirect with
post-increment addressing. A 32-bit value is read from the effective address
specified in Rm and loaded into SSR. Rm is post-incremented by 4. This is a
privileged instruction.

Operation

Exceptions

RESINST, RADDERR, RTLBMISS, READPROT

Note

LDC.L @Rm+, SR

0100 m 00110111

15 12 11 8 7 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

op1 ← SignExtend32(Rm);
address ← ZeroExtend32(op1);
ssr ← SignExtend32(ReadMemory32(address));
op1 ← op1 + 4;
Rm ← Register(op1);
SSR ← Register(ssr);

354 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

LDC.L @Rm+, SPC
Description

This instruction loads SPC from memory using register indirect with
post-increment addressing. A 32-bit value is read from the effective address
specified in Rm and loaded into SPC. Rm is post-incremented by 4. This is a
privileged instruction.

Operation

Exceptions

RESINST, RADDERR, RTLBMISS, READPROT

Note

LDC.L @Rm+, SPC

0100 m 01000111

15 12 11 8 7 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

op1 ← SignExtend32(Rm);
address ← ZeroExtend32(op1);
spc ← SignExtend32(ReadMemory32(address));
op1 ← op1 + 4;
Rm ← Register(op1);
SPC ← Register(spc);

Alphabetical list of instructions 355
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

LDC.L @Rm+, DBR
Description

This instruction loads SR from memory using register indirect with post-increment
addressing. A 32-bit value is read from the effective address specified in Rm and
loaded into DBR. Rm is post-incremented by 4. This is a privileged instruction.

Operation

Exceptions

RESINST, RADDERR, RTLBMISS, READPROT

Note

LDC.L @Rm+, DBR

0100 m 11110110

15 12 11 8 7 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

op1 ← SignExtend32(Rm);
address ← ZeroExtend32(op1);
dbr ← SignExtend32(ReadMemory32(address));
op1 ← op1 + 4;
Rm ← Register(op1);
DBR ← Register(dbr);

356 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

LDC.L @Rm+, Rn_BANK
Description

This instruction loads Rn_BANK from memory using register indirect with
post-increment addressing. A 32-bit value is read from the effective address
specified in Rm and loaded into Rn_BANK. Rm is post-incremented by 4. This is a
privileged instruction.

Operation

Exceptions

RESINST, RADDERR, RTLBMISS, READPROT

Note

LDC.L @Rm+, Rn_BANK

0100 m 1 n 0111

15 12 11 8 7 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

op1 ← SignExtend32(Rm);
address ← ZeroExtend32(op1);
rn_bank ← SignExtend32(ReadMemory32(address));
op1 ← op1 + 4;
Rm ← Register(op1);
Rn_BANK ← Register(rn_bank);

Alphabetical list of instructions 357
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

LDS Rm, FPSCR
Description

This floating-point instruction copies Rm to FPSCR. The setting of FPSCR does not
cause any floating-point exceptional conditions to be signaled.

Operation

Exceptions

SLOTFPUDIS, FPUDIS

Note

LDS Rm, FPSCR

0100 m 01101010

15 12 11 8 7 0

sr ← ZeroExtend32(SR);
op1 ← SignExtend32(Rm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
fps, pr, sz, fr ← UnpackFPSCR(op1);
FPSCR ← ZeroExtend32(fps);
SR.PR ← Bit(pr);
SR.SZ ← Bit(sz);
SR.FR ← Bit(fr);

358 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

LDS.L @Rm+, FPSCR
Description

This floating-point instruction loads FPSCR from memory using register indirect
with post-increment addressing. A 32-bit value is read from the effective address
specified in Rm and loaded into FPSCR. Rm is post-incremented by 4. The setting of
FPSCR does not cause any floating-point exceptional conditions to be signaled.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, RADDERR, RTLBMISS, READPROT

Note

LDS.L @Rm+, FPSCR

0100 m 01100110

15 12 11 8 7 0

sr ← ZeroExtend32(SR);
op1 ← SignExtend32(Rm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend32(op1);
value ← ReadMemory32(address);
fps, pr, sz, fr ← UnpackFPSCR(value);
op1 ← op1 + 4;
Rm ← Register(op1);
FPSCR ← ZeroExtend32(fps);
SR.PR ← Bit(pr);
SR.SZ ← Bit(sz);
SR.FR ← Bit(fr);

Alphabetical list of instructions 359
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

LDS Rm, FPUL
Description

This floating-point instruction copies Rm to FPUL.

Operation

Exceptions

SLOTFPUDIS, FPUDIS

Note

LDS Rm, FPUL

0100 m 01011010

15 12 11 8 7 0

sr ← ZeroExtend32(SR);
op1 ← SignExtend32(Rm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
fpul ← op1;
FPUL ← ZeroExtend32(fpul);

360 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

LDS.L @Rm+, FPUL
Description

This floating-point instruction loads FPUL from memory using register indirect
with post-increment addressing. A 32-bit value is read from the effective address
specified in Rm and loaded into FPUL. Rm is post-incremented by 4.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, RADDERR, RTLBMISS, READPROT

Note

LDS.L @Rm+, FPUL

0100 m 01010110

15 12 11 8 7 0

sr ← ZeroExtend32(SR);
op1 ← SignExtend32(Rm);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend32(op1);
fpul ← ReadMemory32(address);
op1 ← op1 + 4;
Rm ← Register(op1);
FPUL ← ZeroExtend32(fpul);

Alphabetical list of instructions 361
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

LDS Rm, MACH
Description

This instruction copies Rm to MACH.

Operation

Note

LDS Rm, MACH

0100 m 00001010

15 12 11 8 7 0

op1 ← SignExtend32(Rm);
mach ← op1;
MACH ← ZeroExtend32(mach);

362 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

LDS.L @Rm+, MACH
Description

This instruction loads MACH from memory using register indirect with
post-increment addressing. A 32-bit value is read from the effective address
specified in Rm and loaded into MACH. Rm is post-incremented by 4.

Operation

Exceptions

RADDERR, RTLBMISS, READPROT

Note

LDS.L @Rm+, MACH

0100 m 00000110

15 12 11 8 7 0

op1 ← SignExtend32(Rm);
address ← ZeroExtend32(op1);
mach ← SignExtend32(ReadMemory32(address));
op1 ← op1 + 4;
Rm ← Register(op1);
MACH ← ZeroExtend32(mach);

Alphabetical list of instructions 363
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

LDS Rm, MACL
Description

This instruction copies Rm to MACL.

Operation

Note

LDS Rm, MACL

0100 m 00011010

15 12 11 8 7 0

op1 ← SignExtend32(Rm);
macl ← op1;
MACL ← ZeroExtend32(macl);

364 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

LDS.L @Rm+, MACL
Description

This instruction loads MACL from memory using register indirect with
post-increment addressing. A 32-bit value is read from the effective address
specified in Rm and loaded into MACL. Rm is post-incremented by 4.

Operation

Exceptions

RADDERR, RTLBMISS, READPROT

Note

LDS.L @Rm+, MACL

0100 m 00010110

15 12 11 8 7 0

op1 ← SignExtend32(Rm);
address ← ZeroExtend32(op1);
macl ← SignExtend32(ReadMemory32(address));
op1 ← op1 + 4;
Rm ← Register(op1);
MACL ← ZeroExtend32(macl);

Alphabetical list of instructions 365
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

LDS Rm, PR
Description

This instruction copies Rm to PR.

Operation

Note

LDS Rm, PR

0100 m 00101010

15 12 11 8 7 0

op1 ← SignExtend32(Rm);
newpr ← op1;
delayedpr ← newpr;
PR’ ← Register(newpr);
PR’’ ← Register(delayedpr);

366 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

LDS.L @Rm+, PR
Description

This instruction loads PR from memory using register indirect with post-increment
addressing. A 32-bit value is read from the effective address specified in Rm and
loaded into PR. Rm is post-incremented by 4.

Operation

Exceptions

RADDERR, RTLBMISS, READPROT

Note

LDS.L @Rm+, PR

0100 m 00100110

15 12 11 8 7 0

op1 ← SignExtend32(Rm);
address ← ZeroExtend32(op1);
newpr ← SignExtend32(ReadMemory32(address));
delayedpr ← newpr;
op1 ← op1 + 4;
Rm ← Register(op1);
PR’ ← Register(newpr);
PR’’ ← Register(delayedpr);

Alphabetical list of instructions 367
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

LDTLB
Description

This instruction loads the contents of the PTEH/PTEL registers into the UTLB
(unified translation lookaside buffer) specified by MMUCR.URC (random counter
field in the MMC control register).

LDTLB is a privileged instruction, and can only be used in privileged mode. Use of
this instruction in user mode will cause a RESINST trap.

Operation

Exceptions

RESINST

Note

As this instruction loads the contents of the PTEH/PTEL registers into a UTLB
entry, it should be used either with the MMU disabled, or in the P1 or P2 virtual
space with the MMU enabled (see Chapter 3: Memory management unit (MMU) on
page 45, for details). After this instruction is issued, there must be at least one

LDTLB

0000000000111000

15 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

UTLB[MMUCR.URC].ASID ← PTEH.ASID
UTLB[MMUCR.URC].VPN ← PTEH.VPN
UTLB[MMUCR.URC].PPN ← PTEH.PPN
UTLB[MMUCR.URC].SZ ← PTEL.SZ1<<1 + PTEL.SZ0
UTLB[MMUCR.URC].SH ← PTEL.SH
UTLB[MMUCR.URC].PR ← PTEL.PR
UTLB[MMUCR.URC].WT ← PTEL.WT
UTLB[MMUCR.URC].C ← PTEL.C
UTLB[MMUCR.URC].D ← PTEL.D
UTLB[MMUCR.URC].V ← PTEL.V

368 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

instruction between the LDTLB instruction and the execution of an instruction from
the areas P0, U0, and P3 (i.e. via a BRAF, BSRF, JMP, JSR, RTS, or RTE).

Alphabetical list of instructions 369
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

MAC.L @Rm+, @Rn+
Description

This instruction reads the signed 32-bit value at the effective address specified in
Rn, and then post-increments Rn by 4. It also reads the signed 32-bit value at the
effective address specified in Rm, and then post-increments Rm by 4. These 2 values
are multiplied together to give a 64-bit result, and this result is added to the 64-bit
accumulator held in MACL and MACH. This accumulation gives an output with 65
bits of precision.

If the S-bit is 0, the result is the lower 64 bits of the accumulation. If the S-bit is 1,
the result is calculated by saturating the accumulation to the signed range [-248,
248). In either case, the 64-bit result is split into low and high halves, which are
placed into MACL and MACH respectively.

Exceptions

RADDERR, RTLBMISS, READPROT

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

If Rm and Rn refer to the same register (i.e. m = n), then this register will be
post-incremented twice. The instruction will read two long-words from consecutive
memory locations.

Operation

MAC.L @Rm+, @Rn+

0000 n m 1111

15 12 11 8 7 4 3 0

370 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

macl ← ZeroExtend32(MACL);
mach ← ZeroExtend32(MACH);
s ← ZeroExtend1(S);
m_field ← ZeroExtend4(m);
n_field ← ZeroExtend4(n);
m_address ← SignExtend32(Rm);
n_address ← SignExtend32(Rn);
value2 ← SignExtend32(ReadMemory32(ZeroExtend32(n_address)));
n_address ← n_address + 4;
IF (n_field = m_field)
{

m_address ← m_address + 4;
n_address ← n_address + 4;

}
value1 ← SignExtend32(ReadMemory32(ZeroExtend32(m_address)));
m_address ← m_address + 4;
mul ← value2 × value1;
mac ← (mach << 32) + macl;
result ← mac + mul;
IF (s = 1)

IF (((result ⊕ mac) ∧ (result ⊕ mul))< 63 FOR 1 > = 1)
IF (mac< 63 FOR 1 > = 0)

result ← 247 - 1;
ELSE

result ← - 247;
ELSE

result ← SignedSaturate48(result);
macl ← result;
mach ← result >> 32;
Rm ← Register(m_address);
Rn ← Register(n_address);
MACL ← ZeroExtend32(macl);
MACH ← ZeroExtend32(mach);

MAC.L @Rm+, @Rn+

Alphabetical list of instructions 371
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

MAC.W @Rm+, @Rn+
Description

This instruction reads the signed 16-bit value at the effective address specified in
Rn, and then post-increments Rn by 2. It also reads the signed 16-bit value at the
effective address specified in Rm, and then post-increments Rm by 2. These 2 values
are multiplied together to give a 32-bit result.

If the S-bit is 0, the 32-bit multiply result is added to the 64-bit accumulator held in
MACL and MACH. This accumulation gives an output with 65 bits of precision, and
the result is the lower 64 bits of the accumulation. The result is split into low and
high halves, which are placed into MACL and MACH respectively.

If the S-bit is 1, the 32-bit multiply result is added to the 32-bit accumulator held in
MACL. This accumulation gives an output with 33 bits of precision, and is saturated
to the signed range [-231, 231), and then placed in MACL. If the accumulation
overflows this signed range, then MACH is set to 1 to denote overflow otherwise
MACH is unchanged.

Exceptions

RADDERR, RTLBMISS, READPROT

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

If Rm and Rn refer to the same register (i.e. m = n), then this register will be
post-incremented twice. The instruction will read two words from consecutive
memory locations.

Operation

MAC.W @Rm+, @Rn+

0100 n m 1111

15 12 11 8 7 4 3 0

372 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

macl ← ZeroExtend32(MACL);
mach ← ZeroExtend32(MACH);
s ← ZeroExtend1(S);
m_field ← ZeroExtend4(m);
n_field ← ZeroExtend4(n);
m_address ← SignExtend32(Rm);
n_address ← SignExtend32(Rn);
value2 ← SignExtend16(ReadMemory16(ZeroExtend32(n_address)));
n_address ← n_address + 2;
IF (n_field = m_field)
{

m_address ← m_address + 2;
n_address ← n_address + 2;

}
value1 ← SignExtend16(ReadMemory16(ZeroExtend32(m_address)));
m_address ← m_address + 2;
mul ← value2 × value1;
IF (s = 1)
{

macl ← SignExtend32(macl) + mul;
temp ← SignedSaturate32(macl);
IF (macl = temp)

result ← (mach << 32) ∨ ZeroExtend32(macl);
ELSE

result ← (0x1 << 32) ∨ ZeroExtend32(temp);
}
ELSE

result ← ((mach << 32) + macl) + mul;
macl ← result;
mach ← result >> 32;
Rm ← Register(m_address);
Rn ← Register(n_address);
MACL ← ZeroExtend32(macl);
MACH ← ZeroExtend32(mach);

MAC.W @Rm+, @Rn+

Alphabetical list of instructions 373
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

MOV Rm, Rn
Description

This instruction copies the value of Rm to Rn.

Operation

Note

MOV Rm, Rn

0110 n m 0011

15 12 11 8 7 4 3 0

op1 ← ZeroExtend32(Rm);
op2 ← op1;
Rn ← Register(op2);

374 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

MOV #imm, Rn
Description

This instruction sign-extends the 8-bit immediate s and places the result in Rn.

Operation

Note

The ‘#imm’ in the assembly syntax represents the immediate s after sign extension.

MOV #imm, Rn

1110 n s

15 12 11 8 7 0

imm ← SignExtend8(s);
op2 ← imm;
Rn ← Register(op2);

Alphabetical list of instructions 375
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

MOV.B Rm, @Rn
Description

This instruction stores a byte to memory using register indirect with
zero-displacement addressing. The effective address is specified in Rn. The byte to
be stored is held in the lowest 8 bits of Rm.

Operation

Exceptions

WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

MOV.B Rm, @Rn

0010 n m 0000

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← SignExtend32(Rn);
address ← ZeroExtend32(op2);
WriteMemory8(address, op1);

376 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

MOV.B Rm, @-Rn
Description

This instruction stores a byte to memory using register indirect with pre-decrement
addressing. Rn is pre-decremented by 1 to give the effective address. The byte to be
stored is held in the lowest 8 bits of Rm.

Operation

Exceptions

WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

MOV.B Rm, @-Rn

0010 n m 0100

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← SignExtend32(Rn);
address ← ZeroExtend32(op2 - 1);
WriteMemory8(address, op1);
op2 ← address;
Rn ← Register(op2);

Alphabetical list of instructions 377
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

MOV.B Rm, @(R0, Rn)
Description

This instruction stores a byte to memory using register indirect addressing. The
effective address is formed by adding R0 to Rn. The byte to be stored is held in the
lowest 8 bits of Rm.

Operation

Exceptions

WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

MOV.B Rm, @(R0, Rn)

0000 n m 0100

15 12 11 8 7 4 3 0

r0 ← SignExtend32(R0);
op1 ← SignExtend32(Rm);
op2 ← SignExtend32(Rn);
address ← ZeroExtend32(r0 + op2);
WriteMemory8(address, op1);

378 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

MOV.B R0, @(disp, GBR)
Description

This instruction stores a byte to memory using GBR-relative with displacement
addressing. The effective address is formed by adding GBR to the zero-extended
8-bit immediate i. The byte to be stored is held in the lowest 8 bits of R0.

Operation

Exceptions

WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension.

MOV.B R0, @(disp, GBR)

11000000 i

15 8 7 0

gbr ← SignExtend32(GBR);
r0 ← SignExtend32(R0);
disp ← ZeroExtend8(i);
address ← ZeroExtend32(disp + gbr);
WriteMemory8(address, r0);

Alphabetical list of instructions 379
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

MOV.B R0, @(disp, Rn)
Description

This instruction stores a byte to memory using register indirect with displacement
addressing. The effective address is formed by adding Rn and the zero-extended
4-bit immediate i. The byte to be stored is held in the lowest 8 bits of R0.

Operation

Exceptions

WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension.

MOV.B R0, @(disp, Rn)

10000000 n i

15 8 7 4 3 0

r0 ← SignExtend32(R0);
disp ← ZeroExtend4(i);
op2 ← SignExtend32(Rn);
address ← ZeroExtend32(disp + op2);
WriteMemory8(address, r0);

380 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

MOV.B @Rm, Rn
Description

This instruction loads a signed byte from memory using register indirect with
zero-displacement addressing. The effective address is specified in Rm. The byte is
loaded from the effective address, sign-extended and placed in Rn.

Operation

Exceptions

RADDERR, RTLBMISS, READPROT

Note

MOV.B @Rm, Rn

0110 n m 0000

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
address ← ZeroExtend32(op1);
op2 ← SignExtend8(ReadMemory8(address));
Rn ← Register(op2);

Alphabetical list of instructions 381
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

MOV.B @Rm+, Rn
Description

This instruction loads a signed byte from memory using register indirect with
post-increment addressing. The byte is loaded from the effective address specified in
Rm and sign-extended. Rm is post-incremented by 1, and then the loaded byte is
placed in Rn.

Operation

Exceptions

RADDERR, RTLBMISS, READPROT

Note

If Rm and Rn refer to the same register (i.e. m = n), the result placed in this register
will be the sign-extended byte loaded from memory.

MOV.B @Rm+, Rn

0110 n m 0100

15 12 11 8 7 4 3 0

m_field ← ZeroExtend4(m);
n_field ← ZeroExtend4(n);
op1 ← SignExtend32(Rm);
address ← ZeroExtend32(op1);
op2 ← SignExtend8(ReadMemory8(address));
IF (m_field = n_field)

op1 ← op2;
ELSE

op1 ← op1 + 1;
Rm ← Register(op1);
Rn ← Register(op2);

382 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

MOV.B @(R0, Rm), Rn
Description

This instruction loads a signed byte from memory using register indirect
addressing. The effective address is formed by adding R0 to Rm. The byte is loaded
from the effective address, sign-extended and placed in Rn.

Operation

Exceptions

RADDERR, RTLBMISS, READPROT

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

MOV.B @(R0, Rm), Rn

0000 n m 1100

15 12 11 8 7 4 3 0

r0 ← SignExtend32(R0);
op1 ← SignExtend32(Rm);
address ← ZeroExtend32(r0 + op1);
op2 ← SignExtend8(ReadMemory8(address));
Rn ← Register(op2);

Alphabetical list of instructions 383
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

MOV.B @(disp, GBR), R0
Description

This instruction loads a signed byte from memory using GBR-relative with
displacement addressing. The effective address is formed by adding GBR to the
zero-extended 8-bit immediate i. The byte is loaded from the effective address,
sign-extended and placed in R0.

Operation

Exceptions

RADDERR, RTLBMISS, READPROT

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension.

MOV.B @(disp, GBR), R0

11000100 i

15 8 7 0

gbr ← SignExtend32(GBR);
disp ← ZeroExtend8(i);
address ← ZeroExtend32(disp + gbr);
r0 ← SignExtend8(ReadMemory8(address));
R0 ← Register(r0);

384 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

MOV.B @(disp, Rm), R0
Description

This instruction loads a signed byte from memory using register indirect with
displacement addressing. The effective address is formed by adding Rm to the
zero-extended 4-bit immediate i. The byte is loaded from the effective address,
sign-extended and placed in R0.

Operation

Exceptions

RADDERR, RTLBMISS, READPROT

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension.

MOV.B @(disp, Rm), R0

10000100 m i

15 8 7 4 3 0

disp ← ZeroExtend4(i);
op2 ← SignExtend32(Rm);
address ← ZeroExtend32(disp + op2);
r0 ← SignExtend8(ReadMemory8(address));
R0 ← Register(r0);

Alphabetical list of instructions 385
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

MOV.L Rm, @Rn
Description

This instruction stores a long-word to memory using register indirect with
zero-displacement addressing. The effective address is specified in Rn. The
long-word to be stored is held in Rm.

Operation

Exceptions

WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

MOV.L Rm, @Rn

0010 n m 0010

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← SignExtend32(Rn);
address ← ZeroExtend32(op2);
WriteMemory32(address, op1);

386 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

MOV.L Rm, @-Rn
Description

This instruction stores a long-word to memory using register indirect with
pre-decrement addressing. Rn is pre-decremented by 4 to give the effective address.
The long-word to be stored is held in Rm.

Operation

Exceptions

WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

MOV.L Rm, @-Rn

0010 n m 0110

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← SignExtend32(Rn);
address ← ZeroExtend32(op2 - 4);
WriteMemory32(address, op1);
op2 ← address;
Rn ← Register(op2);

Alphabetical list of instructions 387
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

MOV.L Rm, @(R0, Rn)
Description

This instruction stores a long-word to memory using register indirect addressing.
The effective address is formed by adding R0 to Rn. The long-word to be stored is
held in Rm.

Operation

Exceptions

WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

MOV.L Rm, @(R0, Rn)

0000 n m 0110

15 12 11 8 7 4 3 0

r0 ← SignExtend32(R0);
op1 ← SignExtend32(Rm);
op2 ← SignExtend32(Rn);
address ← ZeroExtend32(r0 + op2);
WriteMemory32(address, op1);

388 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

MOV.L R0, @(disp, GBR)
Description

This instruction stores a long-word to memory using GBR-relative with
displacement addressing. The effective address is formed by adding GBR to the
zero-extended 8-bit immediate i multiplied by 4. The long-word to be stored is held
in R0.

Operation

Exceptions

WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension
and scaling.

MOV.L R0, @(disp, GBR)

11000010 i

15 8 7 0

gbr ← SignExtend32(GBR);
r0 ← SignExtend32(R0);
disp ← ZeroExtend8(i) << 2;
address ← ZeroExtend32(disp + gbr);
WriteMemory32(address, r0);

Alphabetical list of instructions 389
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

MOV.L Rm, @(disp, Rn)
Description

This instruction stores a long-word to memory using register indirect with displacement
addressing. The effective address is formed by adding Rn to the zero-extended 4-bit
immediate i multiplied by 4. The long-word to be stored is held in Rm.

Operation

Exceptions

WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension
and scaling.

MOV.L Rm, @(disp, Rn)

0001 n m i

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
disp ← ZeroExtend4(i) << 2;
op3 ← SignExtend32(Rn);
address ← ZeroExtend32(disp + op3);
WriteMemory32(address, op1);

390 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

MOV.L @Rm, Rn
Description

This instruction loads a signed long-word from memory using register indirect with
zero-displacement addressing. The effective address is specified in Rm. The
long-word is loaded from the effective address and placed in Rn.

Operation

Exceptions

RADDERR, RTLBMISS, READPROT

Note

MOV.L @Rm, Rn

0110 n m 0010

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
address ← ZeroExtend32(op1);
op2 ← SignExtend32(ReadMemory32(address));
Rn ← Register(op2);

Alphabetical list of instructions 391
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

MOV.L @Rm+, Rn
Description

This instruction loads a signed long-word from memory using register indirect with
post-increment addressing. The long-word is loaded from the effective address
specified in Rm. Rm is post-incremented by 4, and then the loaded long-word is
placed in Rn.

Operation

Exceptions

RADDERR, RTLBMISS, READPROT

Note

If Rm and Rn refer to the same register (i.e. m = n), the result placed in this register
will be the sign-extended byte loaded from memory.

MOV.L @Rm+, Rn

0110 n m 0110

15 12 11 8 7 4 3 0

m_field ← ZeroExtend4(m);
n_field ← ZeroExtend4(n);
op1 ← SignExtend32(Rm);
address ← ZeroExtend32(op1);
op2 ← SignExtend32(ReadMemory32(address));
IF (m_field = n_field)

op1 ← op2;
ELSE

op1 ← op1 + 4;
Rm ← Register(op1);
Rn ← Register(op2);

392 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

MOV.L @(R0, Rm), Rn
Description

This instruction loads a signed long-word from memory using register indirect
addressing. The effective address is formed by adding R0 to Rm. The long-word is
loaded from the effective address and placed in Rn.

Operation

Exceptions

RADDERR, RTLBMISS, READPROT

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

MOV.L @(R0, Rm), Rn

0000 n m 1110

15 12 11 8 7 4 3 0

r0 ← SignExtend32(R0);
op1 ← SignExtend32(Rm);
address ← ZeroExtend32(r0 + op1);
op2 ← SignExtend32(ReadMemory32(address));
Rn ← Register(op2);

Alphabetical list of instructions 393
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

MOV.L @(disp, GBR), R0
Description

This instruction loads a signed long-word from memory using GBR-relative with
displacement addressing. The effective address is formed by adding GBR to the
zero-extended 8-bit immediate i multiplied by 4. The long-word is loaded from the
effective address and placed in R0.

Operation

Exceptions

RADDERR, RTLBMISS, READPROT

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension
and scaling.

MOV.L @(disp, GBR), R0

11000110 i

15 8 7 0

gbr ← SignExtend32(GBR);
disp ← ZeroExtend8(i) << 2;
address ← ZeroExtend32(disp + gbr);
r0 ← SignExtend32(ReadMemory32(address));
R0 ← Register(r0);

394 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

MOV.L @(disp, PC), Rn
Description

This instruction loads a signed long-word from memory using PC-relative with
displacement addressing. The effective address is formed by calculating PC+4,
clearing the lowest 2 bits, and adding the zero-extended 8-bit immediate i
multiplied by 4. This address calculation ensures that the effective address is
correctly aligned for a long-word access regardless of the PC alignment. The
long-word is loaded from the effective address and placed in Rn.

Operation

Exceptions

ILLSLOT, RADDERR, RTLBMISS, READPROT

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

An ILLSLOT exception is raised if this instruction is executed in a delay slot.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension
and scaling.

MOV.L @(disp, PC), Rn

1101 n i

15 12 11 8 7 0

pc ← SignExtend32(PC);
disp ← ZeroExtend8(i) << 2;
IF (IsDelaySlot())

THROW ILLSLOT;
address ← ZeroExtend32(disp + ((pc + 4) ∧ (~ 0x3)));
op2 ← SignExtend32(ReadMemory32(address));
Rn ← Register(op2);

Alphabetical list of instructions 395
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

MOV.L @(disp, Rm), Rn
Description

This instruction loads a signed long-word from memory using register indirect with
displacement addressing. The effective address is formed by adding Rm to the
zero-extended 4-bit immediate i multiplied by 4. The long-word is loaded from the
effective address and placed in Rn.

Operation

Exceptions

RADDERR, RTLBMISS, READPROT

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension
and scaling.

MOV.L @(disp, Rm), Rn

0101 n m i

15 12 11 8 7 4 3 0

disp ← ZeroExtend4(i) << 2;
op2 ← SignExtend32(Rm);
address ← ZeroExtend32(disp + op2);
op3 ← SignExtend32(ReadMemory32(address));
Rn ← Register(op3);

396 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

MOV.W Rm, @Rn
Description

This instruction stores a word to memory using register indirect with
zero-displacement addressing. The effective address is specified in Rn. The word to
be stored is held in the lowest 16 bits of Rm.

Operation

Exceptions

WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

MOV.W Rm, @Rn

0010 n m 0001

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← SignExtend32(Rn);
address ← ZeroExtend32(op2);
WriteMemory16(address, op1);

Alphabetical list of instructions 397
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

MOV.W Rm, @-Rn
Description

This instruction stores a word to memory using register indirect with pre-decrement
addressing. Rn is pre-decremented by 2 to give the effective address. The word to be
stored is held in the lowest 16 bits of Rm.

Operation

Exceptions

WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

MOV.W Rm, @-Rn

0010 n m 0101

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← SignExtend32(Rn);
address ← ZeroExtend32(op2 - 2);
WriteMemory16(address, op1);
op2 ← address;
Rn ← Register(op2);

398 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

MOV.W Rm, @(R0, Rn)
Description

This instruction stores a word to memory using register indirect addressing. The
effective address is formed by adding R0 to Rn. The word to be stored is held in the
lowest 16 bits of Rm.

Operation

Exceptions

WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

MOV.W Rm, @(R0, Rn)

0000 n m 0101

15 12 11 8 7 4 3 0

r0 ← SignExtend32(R0);
op1 ← SignExtend32(Rm);
op2 ← SignExtend32(Rn);
address ← ZeroExtend32(r0 + op2);
WriteMemory16(address, op1);

Alphabetical list of instructions 399
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

MOV.W R0, @(disp, GBR)
Description

This instruction stores a word to memory using GBR-relative with displacement
addressing. The effective address is formed by adding GBR to the zero-extended
8-bit immediate i multiplied by 2. The word to be stored is held in the lowest 16 bits
of R0.

Operation

Exceptions

WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension
and scaling.

MOV.W R0, @(disp, GBR)

11000001 i

15 8 7 0

gbr ← SignExtend32(GBR);
r0 ← SignExtend32(R0);
disp ← ZeroExtend8(i) << 1;
address ← ZeroExtend32(disp + gbr);
WriteMemory16(address, r0);

400 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

MOV.W R0, @(disp, Rn)
Description

This instruction stores a word to memory using register indirect with displacement
addressing. The effective address is formed by adding Rn to the zero-extended 4-bit
immediate i multiplied by 2. The word to be stored is held in the lowest 16 bits of
Rm.

Operation

Exceptions

WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension
and scaling.

MOV.W R0, @(disp, Rn)

10000001 n i

15 8 7 4 3 0

r0 ← SignExtend32(R0);
disp ← ZeroExtend4(i) << 1;
op2 ← SignExtend32(Rn);
address ← ZeroExtend32(disp + op2);
WriteMemory16(address, r0);

Alphabetical list of instructions 401
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

MOV.W @Rm, Rn
Description

This instruction loads a signed word from memory using register indirect with
zero-displacement addressing. The effective address is specified in Rm. The word is
loaded from the effective address, sign-extended and placed in Rn.

Operation

Exceptions

RADDERR, RTLBMISS, READPROT

Note

MOV.W @Rm, Rn

0110 n m 0001

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
address ← ZeroExtend32(op1);
op2 ← SignExtend16(ReadMemory16(address));
Rn ← Register(op2);

402 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

MOV.W @Rm+, Rn
Description

This instruction loads a signed word from memory using register indirect with
post-increment addressing. The word is loaded from the effective address specified
in Rm and sign-extended. Rm is post-incremented by 2, and then the loaded word is
placed in Rn.

Operation

Exceptions

RADDERR, RTLBMISS, READPROT

Note

If Rm and Rn refer to the same register (i.e. m = n), the result placed in this register
will be the sign-extended byte loaded from memory.

MOV.W @Rm+, Rn

0110 n m 0101

15 12 11 8 7 4 3 0

m_field ← ZeroExtend4(m);
n_field ← ZeroExtend4(n);
op1 ← SignExtend32(Rm);
address ← ZeroExtend32(op1);
op2 ← SignExtend16(ReadMemory16(address));
IF (m_field = n_field)

op1 ← op2;
ELSE

op1 ← op1 + 2;
Rm ← Register(op1);
Rn ← Register(op2);

Alphabetical list of instructions 403
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

MOV.W @(R0, Rm), Rn
Description

This instruction loads a signed word from memory using register indirect
addressing. The effective address is formed by adding R0 to Rm. The word is loaded
from the effective address, sign-extended and placed in Rn.

Operation

Exceptions

RADDERR, RTLBMISS, READPROT

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

MOV.W @(R0, Rm), Rn

0000 n m 1101

15 12 11 8 7 4 3 0

r0 ← SignExtend32(R0);
op1 ← SignExtend32(Rm);
address ← ZeroExtend32(r0 + op1);
op2 ← SignExtend16(ReadMemory16(address));
Rn ← Register(op2);

404 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

MOV.W @(disp, GBR), R0
Description

This instruction loads a signed word from memory using GBR-relative with
displacement addressing. The effective address is formed by adding GBR to the
zero-extended 8-bit immediate i multiplied by 2. The word is loaded from the
effective address, sign-extended and placed in R0.

Operation

Exceptions

RADDERR, RTLBMISS, READPROT

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension
and scaling.

MOV.W @(disp, GBR), R0

11000101 i

15 8 7 0

gbr ← SignExtend32(GBR);
disp ← ZeroExtend8(i) << 1;
address ← ZeroExtend32(disp + gbr);
r0 ← SignExtend16(ReadMemory16(address));
R0 ← Register(r0);

Alphabetical list of instructions 405
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

MOV.W @(disp, PC), Rn
Description

This instruction loads a signed word from memory using PC-relative with
displacement addressing. The effective address is formed by calculating PC+4, and
adding the zero-extended 8-bit immediate i multiplied by 2. The word is loaded from
the effective address, sign-extended and placed in Rn.

Operation

Exceptions

ILLSLOT, RADDERR, RTLBMISS, READPROT

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

An ILLSLOT exception is raised if this instruction is executed in a delay slot.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension
and scaling.

MOV.W @(disp, PC), Rn

1001 n i

15 12 11 8 7 0

pc ← SignExtend32(PC);
disp ← ZeroExtend8(i) << 1;
IF (IsDelaySlot())

THROW ILLSLOT;
address ← ZeroExtend32(disp + (pc + 4));
op2 ← SignExtend16(ReadMemory16(address));
Rn ← Register(op2);

406 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

MOV.W @(disp, Rm), R0
Description

This instruction loads a signed word from memory using register indirect with
displacement addressing. The effective address is formed by adding Rm to the
zero-extended 4-bit immediate i multiplied by 2. The word is loaded from the
effective address, sign-extended and placed in Rn.

Operation

Exceptions

RADDERR, RTLBMISS, READPROT

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension
and scaling.

MOV.W @(disp, Rm), R0

10000101 m i

15 8 7 4 3 0

disp ← ZeroExtend4(i) << 1;
op2 ← SignExtend32(Rm);
address ← ZeroExtend32(disp + op2);
r0 ← SignExtend16(ReadMemory16(address));
R0 ← Register(r0);

Alphabetical list of instructions 407
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

MOVA @(disp, PC), R0
Description

This instruction calculates an effective address using PC-relative with displacement
addressing. The effective address is formed by calculating PC+4, clearing the lowest
2 bits, and adding the zero-extended 8-bit immediate i multiplied by 4. This address
calculation ensures that the effective address is correctly aligned for a long-word
access regardless of the PC alignment. The effective address is placed in R0.

Operation

Exceptions

ILLSLOT

Note

The instructions only computes the effective address, no memory request is made.

An ILLSLOT exception is raised if this instruction is executed in a delay slot.

The ‘disp’ in the assembly syntax represents the immediate i after zero extension
and scaling.

MOVA @(disp, PC), R0

11000111 i

15 8 7 0

pc ← SignExtend32(PC);
disp ← ZeroExtend8(i) << 2;
IF (IsDelaySlot())

THROW ILLSLOT;
r0 ← disp + ((pc + 4) ∧ (~ 0x3));
R0 ← Register(r0);

408 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

MOVCA.L R0, @Rn
Description

This instruction stores the long-word in R0 to memory at the effective address
specified in Rn. It provides a hint to the implementation that it is not necessary to
retrieve the data of this operand cache block from memory. It is
implementation-specific as to whether the memory access will occur.

The effective address specified in Rn identifies a surrounding block of memory,
which starts at an address aligned to the cache block size and has a size equal to the
cache block size. The cache block size is implementation dependent.

MOVCA.L checks for address error, translation miss and protection exception cases.

Apart from the written long-word, the value of all other locations in the memory
block targeted by a MOVCA.L becomes architecturally undefined. Programs must
not rely on these values. For compatibility with other implementations, software
must exercise care when using MOVCA.L.

Operation

MOVCA.L R0, @Rn

0000 n 11000011

15 12 11 8 7 0

r0 ← SignExtend32(R0);
op1 ← SignExtend32(Rn);
IF (AddressUnavailable(op1))

THROW WADDERR, op1;
IF (MMU() AND DataAccessMiss(op1))

THROW WTLBMISS, op1;
IF (MMU() AND WriteProhibited(op1))
 THROW WRITEPROT, op1;
IF (MMU() AND NOT DirtyBit(op1))
 THROW FIRSTWRITE, op1
ALLOCO(op1);
address ← ZeroExtend32(op1);
WriteMemory32(op1, r0);

Alphabetical list of instructions 409
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Exceptions

WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

410 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

MOVT Rn
Description

This instruction copies the T-bit to Rn.

Operation

Note

MOVT Rn

0000 n 00101001

15 12 11 8 7 0

t ← ZeroExtend1(T);
op1 ← t;
Rn ← Register(op1);

Alphabetical list of instructions 411
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

MUL.L Rm, Rn
Description

This instruction multiplies the 32-bit value in Rm by the 32-bit value in Rn, and
places the least significant 32 bits of the result in MACL. The most significant 32
bits of the result are not provided, and MACH is not modified.

Operation

Note

MUL.L Rm, Rn

0000 n m 0111

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← SignExtend32(Rn);
macl ← op1 × op2;
MACL ← ZeroExtend32(macl);

412 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

MULS.W Rm, Rn
Description

This instruction multiplies the signed lowest 16 bits of Rm by the signed lowest 16
bits of Rn, and places the full 32-bit result in MACL. MACH is not modified.

Operation

Note

MULS.W Rm, Rn

0010 n m 1111

15 12 11 8 7 4 3 0

op1 ← SignExtend16(SignExtend32(Rm));
op2 ← SignExtend16(SignExtend32(Rn));
macl ← op1 × op2;
MACL ← ZeroExtend32(macl);

Alphabetical list of instructions 413
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

MULU.W Rm, Rn
Description

This instruction multiplies the unsigned lowest 16 bits of Rm by the unsigned lowest
16 bits of Rn, and places the full 32-bit result in MACL. MACH is not modified.

Operation

Note

MULU.W Rm, Rn

0010 n m 1110

15 12 11 8 7 4 3 0

op1 ← ZeroExtend16(SignExtend32(Rm));
op2 ← ZeroExtend16(SignExtend32(Rn));
macl ← op1 × op2;
MACL ← ZeroExtend32(macl);

414 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

NEG Rm, Rn
Description

This instruction subtracts Rm from zero and places the result in Rn.

Operation

Note

NEG Rm, Rn

0110 n m 1011

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← - op1;
Rn ← Register(op2);

Alphabetical list of instructions 415
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

NEGC Rm, Rn
Description

This instruction subtracts Rm and the T-bit from zero and places the result in Rn.
The borrow from the subtraction is placed in the T-bit.

Operation

Note

NEGC Rm, Rn

0110 n m 1010

15 12 11 8 7 4 3 0

t ← ZeroExtend1(T);
op1 ← ZeroExtend32(Rm);
op2 ← (- op1) - t;
t ← op2< 32 FOR 1 >;
Rn ← Register(op2);
T ← Bit(t);

416 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

NOP
Description

This instruction performs no operation.

Operation

NOP

0000000000001001

15 0

Alphabetical list of instructions 417
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

NOT Rm, Rn
Description

This instruction performs a bitwise NOT on Rm and places the result in Rn.

Operation

Note

NOT Rm, Rn

0110 n m 0111

15 12 11 8 7 4 3 0

op1 ← ZeroExtend32(Rm);
op2 ← ~ op1;
Rn ← Register(op2);

418 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

OCBI @Rn
Description

This instruction invalidates an operand cache block (if any) that corresponds to a
specified effective address. If the data in the operand cache block is dirty, it is
discarded without write-back to memory. Immediately after execution of OCBI,
assuming no exception was raised, it is guaranteed that the targeted memory block
in physical address space is not present in the operand cache.

The effective address specified in Rn identifies a surrounding block of memory,
which starts at an address aligned to the cache block size and has a size equal to the
cache block size. The cache block size is implementation dependent.

OCBI invalidates an implementation-dependent amount of data. For compatibility
with other implementations, software must exercise care when using OCBI.

OCBI checks for address error, translation miss and protection exception cases.

Operation

Exceptions

WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

OCBI @Rn

0000 n 10010011

15 12 11 8 7 0

op1 ← SignExtend32(Rn);
IF (AddressUnavailable(op1))

THROW WADDERR, op1;
IF (MMU() AND DataAccessMiss(op1))

THROW WTLBMISS, op1;
IF (MMU() AND WriteProhibited(op1))

THROW WRITEPROT, op1;
IF (MMU() AND NOT DirtyBit(op1))
 THROW FIRSTWRITE, op1
OCBI(op1);

Alphabetical list of instructions 419
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

OCBP @Rn
Description

This instruction purges an operand cache block (if any) that corresponds to a
specified effective address. If the data in the operand cache block is dirty, it is
written back to memory before being discarded. Immediately after execution of
OCBP, assuming no exception was raised, it is guaranteed that the targeted
memory block in physical address space is not present in the operand cache.

The effective address specified in Rn identifies a surrounding block of memory,
which starts at an address aligned to the cache block size and has a size equal to the
cache block size. The cache block size is implementation dependent.

OCBP checks for address error, translation miss and protection exception cases.

Operation

Exceptions

RADDERR, RTLBMISS, READPROT

Note

OCBP @Rn

0000 n 10100011

15 12 11 8 7 0

op1 ← SignExtend32(Rn);
IF (AddressUnavailable(op1))

THROW RADDERR, op1;
IF (MMU() AND DataAccessMiss(op1))

THROW RTLBMISS, op1;
IF (MMU() AND (ReadProhibited(op1) AND WriteProhibited(op1)))

THROW READPROT, op1;
OCBP(op1);

420 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

OCBWB @Rn
Description

This instruction write-backs an operand cache block (if any) that corresponds to a
specified effective address. If the data in the operand cache block is dirty, it is
written back to memory but is not discarded. Immediately after execution of
OCBWB, assuming no exception was raised, it is guaranteed that the targeted
memory block in physical address space will not be dirty in the operand cache.

The effective address specified in Rn identifies a surrounding block of memory,
which starts at an address aligned to the cache block size and has a size equal to the
cache block size. The cache block size is implementation dependent.

OCBWB checks for address error, translation miss and protection exception cases.

Operation

Exceptions

RADDERR, RTLBMISS, READPROT

Note

OCBWB @Rn

0000 n 10110011

15 12 11 8 7 0

op1 ← SignExtend32(Rn);
IF (AddressUnavailable(op1))

THROW RADDERR, op1;
IF (MMU() AND DataAccessMiss(op1))

THROW RTLBMISS, op1;
IF (MMU() AND (ReadProhibited(op1) AND WriteProhibited(op1)))

THROW READPROT, op1;
OCBWB(op1);

Alphabetical list of instructions 421
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

OR Rm, Rn
Description

This instruction performs a bitwise OR of Rm with Rn and places the result in Rn.

Operation

Note

OR Rm, Rn

0010 n m 1011

15 12 11 8 7 4 3 0

op1 ← ZeroExtend32(Rm);
op2 ← ZeroExtend32(Rn);
op2 ← op2 ∨ op1;
Rn ← Register(op2);

422 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

OR #imm, R0
Description

This instruction performs a bitwise OR of R0 with the zero-extended 8-bit
immediate i and places the result in R0.

Operation

Note

The ‘#imm’ in the assembly syntax represents the immediate i after zero extension.

OR #imm, R0

11001011 i

15 8 7 0

r0 ← ZeroExtend32(R0);
imm ← ZeroExtend8(i);
r0 ← r0 ∨ imm;
R0 ← Register(r0);

Alphabetical list of instructions 423
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

OR.B #imm, @(R0, GBR)
Description

This instruction performs a bitwise OR of an immediate constant with 8 bits of data
held in memory. The effective address is calculated by adding R0 and GBR. The 8
bits of data at the effective address are read. A bitwise OR is performed of the read
data with the zero-extended 8-bit immediate i. The result is written back to the 8
bits of data at the same effective address.

Operation

Exceptions

WADDERR, WTLBMISS, READPROT, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

The ‘#imm’ in the assembly syntax represents the immediate i after zero extension.

OR.B #imm, @(R0, GBR)

11001111 i

15 8 7 0

r0 ← SignExtend32(R0);
gbr ← SignExtend32(GBR);
imm ← ZeroExtend8(i);
address ← ZeroExtend32(r0 + gbr);
value ← ZeroExtend8(ReadMemory8(address));
value ← value ∨ imm;
WriteMemory8(address, value);

424 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

PREF @Rn
Description

This instruction indicates a software-directed data prefetch from the specified
effective address. Software can use this instruction to give advance notice that
particular data will be required. It is implementation-specific as to whether a
prefetch will be performed.

The effective address specified in Rn identifies a surrounding block of memory,
which starts at an address aligned to the cache block size and has a size equal to the
cache block size. The cache block size is implementation dependent.

Any OTLBMULTIHIT or RADDERR exception is delivered, other exceptions are
discarded and the prefetch has no effect.

The semantics of a PREF instruction, when applied to an address in the store
queues range (0xE0000000 to 0xE3FFFFFF) is quite different to that elsewhere.
For details refer to Section 4.6: Store queues on page 105.

Operation

Exceptions

RADDERR, OTLBMULTIHIT

Note

PREF @Rn

0000 n 10000011

15 12 11 8 7 0

op1 ← SignExtend32(Rn);
IF (AddressUnavailable(op1))

THROW RADDERR, op1
IF (NOT (MMU() AND DataAccessMiss(op1)))

IF (NOT (MMU() AND ReadProhibited(op1)))
PREF(op1);

Alphabetical list of instructions 425
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

ROTCL Rn
Description

This instruction performs a one-bit left rotation of the bits held in Rn and the T-bit.
The 32-bit value in Rn is shifted one bit to the left, the least significant bit is given
the old value of the T-bit, and the bit that is shifted out is moved to the T-bit.

Operation

Note

ROTCL Rn

0100 n 00100100

15 12 11 8 7 0

t ← ZeroExtend1(T);
op1 ← ZeroExtend32(Rn);
op1 ← (op1 << 1) ∨ t;
t ← op1< 32 FOR 1 >;
Rn ← Register(op1);
T ← Bit(t);

426 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

ROTCR Rn
Description

This instruction performs a one-bit right rotation of the bits held in Rn and the T-bit.
The 32-bit value in Rn is shifted one bit to the right, the most significant bit is given
the old value of the T-bit, and the bit that is shifted out is moved to the T-bit.

Operation

Note

ROTCR Rn

0100 n 00100101

15 12 11 8 7 0

t ← ZeroExtend1(T);
op1 ← ZeroExtend32(Rn);
oldt ← t;
t ← op1< 0 FOR 1 >;
op1 ← (op1 >> 1) ∨ (oldt << 31);
Rn ← Register(op1);
T ← Bit(t);

Alphabetical list of instructions 427
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

ROTL Rn
Description

This instruction performs a one-bit left rotation of the bits held in Rn. The 32-bit
value in Rn is shifted one bit to the left, and the least significant bit is given the
value of the bit that is shifted out. The bit that is shifted out of the operand is also
copied to the T-bit.

Operation

Note

ROTL Rn

0100 n 00000100

15 12 11 8 7 0

op1 ← ZeroExtend32(Rn);
t ← op1< 31 FOR 1 >;
op1 ← (op1 << 1) ∨ t;
Rn ← Register(op1);
T ← Bit(t);

428 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

ROTR Rn
Description

This instruction performs a one-bit right rotation of the bits held in Rn. The 32-bit
value in Rn is shifted one bit to the right, and the most significant bit is given the
value of the bit that is shifted out. The bit that is shifted out of the operand is also
copied to the T-bit.

Operation

Note

ROTR Rn

0100 n 00000101

15 12 11 8 7 0

op1 ← ZeroExtend32(Rn);
t ← op1< 0 FOR 1 >;
op1 ← (op1 >> 1) ∨ (t << 31);
Rn ← Register(op1);
T ← Bit(t);

Alphabetical list of instructions 429
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

RTE
Description

This instruction returns from an exception or interrupt handling routine by
restoring the PC and SR values from SPC and SSR. Program execution continues
from the address specified by the restored PC value.

RTE is a privileged instruction, and can only be used in privileged mode. Use of this
instruction in user mode will cause an RESINST exception.

Operation

Exceptions

RESINST, ILLSLOT

Note

Since this is a delayed branch instruction, the instruction in the delay slot is
executed before branching and must not generate an exception.

An ILLSLOT exception is raised if this instruction is executed in a delay slot.

Interrupts are not accepted between this instruction and the instruction in the
delay slot.

RTE

0000000000101011

15 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

ssr ← SignExtend32(SSR);
pc ← SignExtend32(PC)

IF (IsDelaySlot())
THROW ILLSLOT;

target ← pc;
delayedpc ← target ∧ (~ 0x1);
PC’’ ← Register(delayedpc);

430 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

The SR value defined prior to RTE execution is used to fetch the instruction in the
RTE delay slot. However, the value of SR used during execution of the instruction in
the delay slot, is that restored from SSR by the RTE instruction. It is recommended
that, because of this feature, privileged instructions should not be placed in the
delay slot.

If the branch target address is invalid then IADDERR trap is not delivered until
after the instruction in the delay slot has executed and the PC has advanced to the
target address, that is the exception is associated with the target instruction not the
branch.

The behavior is architecturally undefined if the instruction in an RTE delay slot
raises an exception. For this reason, it is recommended that only simple instructions
that cannot generate exceptions are placed in RTE delay slots (unless considerable
care is taken).

Alphabetical list of instructions 431
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

RTS
Description

This instruction is a delayed unconditional branch used for returning from a
subroutine. The value in PR specifies the target address.

Operation

Exceptions

ILLSLOT

Note

Since this is a delayed branch instruction, the delay slot is executed before
branching. An ILLSLOT exception is raised if this instruction is executed in a delay
slot.

If the branch target address is invalid then IADDERR trap is not delivered until
after the instruction in the delay slot has executed and the PC has advanced to the
target address, that is the exception is associated with the target instruction not the
branch.

RTS

0000000000001011

15 0

pr ← SignExtend32(PR);
IF (IsDelaySlot())

THROW ILLSLOT;
target ← pr;
delayedpc ← target ∧ (~ 0x1);
PC’’ ← Register(delayedpc);

432 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

SETS
Description

This instruction sets the S-bit to 1.

Operation

SETS

0000000001011000

15 0

s ← 1;
S ← Bit(s);

Alphabetical list of instructions 433
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

SETT
Description

This instruction sets the T-bit to 1.

Operation

SETT

0000000000011000

15 0

t ← 1;
T ← Bit(t);

434 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

SHAD Rm, Rn
Description

This instruction performs an arithmetic shift of Rn, with the dynamic shift direction
and shift amount indicated by Rm, and places the result in Rn. If Rm is zero, no shift
is performed. If Rm is greater than zero, this is a left shift and the shift amount is
given by the least significant 5 bits of Rm. If Rm is less than zero, this is an
arithmetic right shift and the shift amount is given by the least significant 5 bits of
Rm subtracted from 32. In the case where Rm indicates an arithmetic right shift by
32, the result is filled with copies of the sign-bit of the original Rn.

Operation

Note

SHAD Rm, Rn

0100 n m 1100

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← SignExtend32(Rn);
shift_amount ← ZeroExtend5(op1);
IF (op1 ≥ 0)

op2 ← op2 << shift_amount;
ELSE IF (shift_amount ≠ 0)

op2 ← op2 >> (32 - shift_amount);
ELSE IF (op2 < 0)

op2 ← - 1;
ELSE

op2 ← 0;
Rn ← Register(op2);

Alphabetical list of instructions 435
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

SHAL Rn
Description

Arithmetically shifts Rn to the left by one bit and places the result in Rn. The bit
that is shifted out of the operand is moved to T-bit.

Operation

Note

SHAL Rn

0100 n 00100000

15 12 11 8 7 0

op1 ← SignExtend32(Rn);
t ← op1< 31 FOR 1 >;
op1 ← op1 << 1;
Rn ← Register(op1);
T ← Bit(t);

436 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

SHAR Rn
Description

Arithmetically shifts Rn to the right by one bit and places the result in Rn. The bit
that is shifted out of the operand is moved to T-bit.

Operation

Note

SHAR Rn

0100 n 00100001

15 12 11 8 7 0

op1 ← SignExtend32(Rn);
t ← op1< 0 FOR 1 >;
op1 ← op1 >> 1;
Rn ← Register(op1);
T ← Bit(t);

Alphabetical list of instructions 437
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

SHLD Rm, Rn
Description

This instruction performs a logical shift of Rn, with the dynamic shift direction and
shift amount indicated by Rm, and places the result in Rn. If Rm is zero, no shift is
performed. If Rm is greater than zero, this is a left shift and the shift amount is
given by the least significant 5 bits of Rm. If Rm is less than zero, this is a logical
right shift and the shift amount is given by the least significant 5 bits of Rm
subtracted from 32. In the case where Rm indicates a logical right shift by 32, the
result is 0.

Operation

Note

SHLD Rm, Rn

0100 n m 1101

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← ZeroExtend32(Rn);
shift_amount ← ZeroExtend5(op1);
IF (op1 ≥ 0)

op2 ← op2 << shift_amount;
ELSE IF (shift_amount ≠ 0)

op2 ← op2 >> (32 - shift_amount);
ELSE

op2 ← 0;
Rn ← Register(op2);

438 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

SHLL Rn
Description

This instruction performs a logical left shift of Rn by 1 bit and places the result in
Rn. The bit that is shifted out is moved to the T-bit.

Operation

Note

SHLL Rn

0100 n 00000000

15 12 11 8 7 0

op1 ← ZeroExtend32(Rn);
t ← op1< 31 FOR 1 >;
op1 ← op1 << 1;
Rn ← Register(op1);
T ← Bit(t);

Alphabetical list of instructions 439
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

SHLL2 Rn
Description

This instruction performs a logical left shift of Rn by 2 bits and places the result in
Rn. The bits that are shifted out are discarded.

Operation

Note

SHLL2 Rn

0100 n 00001000

15 12 11 8 7 0

op1 ← ZeroExtend32(Rn);
op1 ← op1 << 2;
Rn ← Register(op1);

440 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

SHLL8 Rn
Description

This instruction performs a logical left shift of Rn by 8 bits and places the result in
Rn. The bits that are shifted out are discarded.

Operation

Note

SHLL8 Rn

0100 n 00011000

15 12 11 8 7 0

op1 ← ZeroExtend32(Rn);
op1 ← op1 << 8;
Rn ← Register(op1);

Alphabetical list of instructions 441
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

SHLL16 Rn
Description

This instruction performs a logical left shift of Rn by 16 bits and places the result in
Rn. The bits that are shifted out are discarded.

Operation

Note

SHLL16 Rn

0100 n 00101000

15 12 11 8 7 0

op1 ← ZeroExtend32(Rn);
op1 ← op1 << 16;
Rn ← Register(op1);

442 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

SHLR Rn
Description

This instruction performs a logical right shift of Rn by 1 bit and places the result in
Rn. The bit that is shifted out is moved to the T-bit.

Operation

Note

SHLR Rn

0100 n 00000001

15 12 11 8 7 0

op1 ← ZeroExtend32(Rn);
t ← op1< 0 FOR 1 >;
op1 ← op1 >> 1;
Rn ← Register(op1);
T ← Bit(t);

Alphabetical list of instructions 443
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

SHLR2 Rn
Description

This instruction performs a logical right shift of Rn by 2 bits and places the result in
Rn. The bits that are shifted out are discarded.

Operation

Note

SHLR2 Rn

0100 n 00001001

15 12 11 8 7 0

op1 ← ZeroExtend32(Rn);
op1 ← op1 >> 2;
Rn ← Register(op1);

444 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

SHLR8 Rn
Description

This instruction performs a logical right shift of Rn by 8 bits and places the result in
Rn. The bits that are shifted out are discarded.

Operation

Note

SHLR8 Rn

0100 n 00011001

15 12 11 8 7 0

op1 ← ZeroExtend32(Rn);
op1 ← op1 >> 8;
Rn ← Register(op1);

Alphabetical list of instructions 445
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

SHLR16 Rn
Description

This instruction performs a logical right shift of Rn by 16 bits and places the result
in Rn. The bits that are shifted out are discarded.

Operation

Note

SHLR16 Rn

0100 n 00101001

15 12 11 8 7 0

op1 ← ZeroExtend32(Rn);
op1 ← op1 >> 16;
Rn ← Register(op1);

446 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

SLEEP
Description

This instruction places the CPU in the power-down state.

In power-down mode, the CPU retains its internal state, but immediately stops
executing instructions and waits for an interrupt request. The PC at the point of
sleep is the address of the instruction immediately following the SLEEP instruction.
This property ensures that when the CPU receives an interrupt request, and exits
the power-down state, the SPC will contain the address of the instruction following
the SLEEP.

SLEEP is a privileged instruction, and can only be used in privileged mode. Use of
this instruction in user mode will cause an RESINST exception.

Operation

Exceptions

RESINST

Note

The effect of SLEEP upon rest of system depends upon the system architecture.
Refer to the system architecture manual of the appropriate product for further
details.

SLEEP

0000000000011011

15 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

SLEEP()

Alphabetical list of instructions 447
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

STC SR, Rn
Description

This instruction copies SR to Rn, it is a privileged instruction.

Operation

Exceptions

RESINST

Note

STC SR, Rn

0000 n 00000010

15 12 11 8 7 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

sr ← SignExtend32(SR);
op1 ← sr
Rn ← Register(op1);

448 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

STC VBR, Rn
Description

This instruction copies VBR to Rn, it is a privileged instruction.

Operation

Exceptions

RESINST

Note

STC VBR, Rn

0000 n 00100010

15 12 11 8 7 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

vbr ← SignExtend32(VBR);
op1 ← vbr
Rn ← Register(op1);

Alphabetical list of instructions 449
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

STC SSR, Rn
Description

This instruction copies SSR to Rn, it is a privileged instruction.

Operation

Exceptions

RESINST

Note

STC SSR, Rn

0000 n 00110010

15 12 11 8 7 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

ssr ← SignExtend32(SSR);
op1 ← ssr
Rn ← Register(op1);

450 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

STC SPC, Rn
Description

This instruction copies SPC to Rn, it is a privileged instruction.

Operation

Exceptions

RESINST

Note

STC SPC, Rn

0000 n 01000010

15 12 11 8 7 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

spc ← SignExtend32(SPC);
op1 ← spc
Rn ← Register(op1);

Alphabetical list of instructions 451
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

STC SGR, Rn
Description

This instruction copies SGR to Rn, it is a privileged instruction.

Operation

Exceptions

RESINST

Note

STC SGR, Rn

0000 n 00111010

15 12 11 8 7 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

sgr ← SignExtend32(SGR);
op1 ← sgr
Rn ← Register(op1);

452 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

STC DBR, Rn
Description

This instruction copies DBR to Rn, it is a privileged instruction.

Operation

Exceptions

RESINST

Note

STC DBR, Rn

0000 n 11111010

15 12 11 8 7 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

dbr ← SignExtend32(DBR);
op1 ← dbr
Rn ← Register(op1);

Alphabetical list of instructions 453
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

STC Rm_BANK, Rn
Description

This instruction copies Rm_BANK to Rn, it is a privileged instruction.

Operation

Exceptions

RESINST

Note

STC Rm_BANK, Rn

0000 n 1 m 0010

15 12 11 8 7 6 4 3 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

op1 ← SignExtend32(Rm_BANK);
op2 ← op1;
Rn ← Register(op2);

454 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

STC.L SR, @-Rn
Description

This instruction stores SR to memory using register indirect with pre-decrement
addressing. Rn is pre-decremented by 4 to give the effective address. The 32-bit
value of SR is written to the effective address. This is a privileged instruction.

Operation

Exceptions

RESINST, WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

STC.L SR, @-Rn

0100 n 00000011

15 12 11 8 7 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

sr ← SignExtend32(SR);
op1 ← SignExtend32(Rn);
address ← ZeroExtend32(op1 - 4);
WriteMemory32(address, sr);
op1 ← address;
Rn ← Register(op1);

Alphabetical list of instructions 455
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

STC.L VBR, @-Rn
Description

This instruction stores VBR to memory using register indirect with pre-decrement
addressing. Rn is pre-decremented by 4 to give the effective address. The 32-bit
value of VBR is written to the effective address. This is a privileged instruction.

Operation

Exceptions

RESINST, WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

STC.L VBR, @-Rn

0100 n 00100011

15 12 11 8 7 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

vbr ← SignExtend32(VBR);
op1 ← SignExtend32(Rn);
address ← ZeroExtend32(op1 - 4);
WriteMemory32(address, vbr);
op1 ← address;
Rn ← Register(op1);

456 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

STC.L SSR, @-Rn
Description

This instruction stores SSR to memory using register indirect with pre-decrement
addressing. Rn is pre-decremented by 4 to give the effective address. The 32-bit
value of SSR is written to the effective address. This is a privileged instruction.

Operation

Exceptions

RESINST, WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

STC.L SSR, @-Rn

0100 n 00110011

15 12 11 8 7 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

ssr ← SignExtend32(SSR);
op1 ← SignExtend32(Rn);
address ← ZeroExtend32(op1 - 4);
WriteMemory32(address, ssr);
op1 ← address;
Rn ← Register(op1);

Alphabetical list of instructions 457
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

STC.L SPC, @-Rn
Description

This instruction stores SPC to memory using register indirect with pre-decrement
addressing. Rn is pre-decremented by 4 to give the effective address. The 32-bit
value of SPC is written to the effective address. This is a privileged instruction.

Operation

Exceptions

RESINST, WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

STC.L SPC, @-Rn

0100 n 01000011

15 12 11 8 7 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

spc ← SignExtend32(SPC);
op1 ← SignExtend32(Rn);
address ← ZeroExtend32(op1 - 4);
WriteMemory32(address, spc);
op1 ← address;
Rn ← Register(op1);

458 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

STC.L SGR, @-Rn
Description

This instruction stores SGR to memory using register indirect with pre-decrement
addressing. Rn is pre-decremented by 4 to give the effective address. The 32-bit
value of SGR is written to the effective address. This is a privileged instruction.

Operation

Exceptions

RESINST, WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

STC.L SGR, @-Rn

0100 n 00110010

15 12 11 8 7 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

sgr ← SignExtend32(SGR);
op1 ← SignExtend32(Rn);
address ← ZeroExtend32(op1 - 4);
WriteMemory32(address, sgr);
op1 ← address;
Rn ← Register(op1);

Alphabetical list of instructions 459
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

STC.L DBR, @-Rn
Description

This instruction stores DBR to memory using register indirect with pre-decrement
addressing. Rn is pre-decremented by 4 to give the effective address. The 32-bit
value of DBR is written to the effective address. This is a privileged instruction.

Operation

Exceptions

RESINST, WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

STC.L DBR, @-Rn

0100 n 11110010

15 12 11 8 7 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

dbr ← SignExtend32(DBR);
op1 ← SignExtend32(Rn);
address ← ZeroExtend32(op1 - 4);
WriteMemory32(address, dbr);
op1 ← address;
Rn ← Register(op1);

460 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

STC.L Rm_BANK, @-Rn
Description

This instruction stores Rm_BANK to memory using register indirect with
pre-decrement addressing. Rn is pre-decremented by 4 to give the effective address.
The 32-bit value of Rm_BANK is written to the effective address. This is a
privileged instruction.

Operation

Exceptions

RESINST, WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

STC.L Rm_BANK, @-Rn

0100 n 1 m 0011

15 12 11 8 7 0

md ← ZeroExtend1(MD);

IF (md = 0)
THROW RESINST;

op1 ← SignExtend32(Rm_BANK);
op2 ← SignExtend32(Rn);
address ← ZeroExtend32(op2 - 4);
WriteMemory32(address, op1);
op2 ← address;
Rn ← Register(op2);

Alphabetical list of instructions 461
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

STC GBR, Rn
Description

This instruction copies GBR to Rn.

Operation

Note

STC GBR, Rn

0000 n 00010010

15 12 11 8 7 0

gbr ← SignExtend32(GBR);
op1 ← gbr;
Rn ← Register(op1);

462 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

STC.L GBR, @-Rn
Description

This instruction stores GBR to memory using register indirect with pre-decrement
addressing. Rn is pre-decremented by 4 to give the effective address. The 32-bit
value of GBR is written to the effective address.

Operation

Exceptions

WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

STC.L GBR, @-Rn

0100 n 00010011

15 12 11 8 7 0

gbr ← SignExtend32(GBR);
op1 ← SignExtend32(Rn);
address ← ZeroExtend32(op1 - 4);
WriteMemory32(address, gbr);
op1 ← address;
Rn ← Register(op1);

Alphabetical list of instructions 463
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

STS FPSCR, Rn
Description

This floating-point instruction copies FPSCR to Rn.

Operation

Exceptions

SLOTFPUDIS, FPUDIS

STS FPSCR, Rn

0000 n 01101010

15 12 11 8 7 0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1 ← fps;
Rn ← Register(op1);

464 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

STS.L FPSCR, @-Rn
Description

This floating-point instruction stores FPSCR to memory using register indirect with
pre-decrement addressing. Rn is pre-decremented by 4 to give the effective address.
The 32-bit value of FPSCR is written to the effective address.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

STS.L FPSCR, @-Rn

0100 n 01100010

15 12 11 8 7 0

sr ← ZeroExtend32(SR);
fps ← ZeroExtend32(FPSCR);
op1 ← SignExtend32(Rn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
value ← fps;
address ← ZeroExtend32(op1 - 4);
WriteMemory32(address, value);
op1 ← address;
Rn ← Register(op1);

Alphabetical list of instructions 465
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

STS FPUL, Rn
Description

This floating-point instruction copies FPUL to Rn.

Operation

Exceptions

SLOTFPUDIS, FPUDIS

STS FPUL, Rn

0000 n 01011010

15 12 11 8 7 0

sr ← ZeroExtend32(SR);
fpul ← SignExtend32(FPUL);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
op1 ← fpul;
Rn ← Register(op1);

466 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

STS.L FPUL, @-Rn
Description

This floating-point instruction stores FPUL to memory using register indirect with
pre-decrement addressing. Rn is pre-decremented by 4 to give the effective address.
The 32-bit value of FPUL is written to the effective address.

Operation

Exceptions

SLOTFPUDIS, FPUDIS, WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

STS.L FPUL, @-Rn

0100 n 01010010

15 12 11 8 7 0

sr ← ZeroExtend32(SR);
fpul ← SignExtend32(FPUL);
op1 ← SignExtend32(Rn);
IF (FpuIsDisabled(sr) AND IsDelaySlot())

THROW SLOTFPUDIS;
IF (FpuIsDisabled(sr))

THROW FPUDIS;
address ← ZeroExtend32(op1 - 4);
WriteMemory32(address, fpul);
op1 ← address;
Rn ← Register(op1);

Alphabetical list of instructions 467
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

STS MACH, Rn
Description

This instruction copies MACH to Rn.

Operation

STS MACH, Rn

0000 n 00001010

15 12 11 8 7 0

mach ← SignExtend32(MACH);
op1 ← mach;
Rn ← Register(op1);

468 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

STS.L MACH, @-Rn
Description

This instruction stores MACH to memory using register indirect with
pre-decrement addressing. Rn is pre-decremented by 4 to give the effective address.
The 32-bit value of MACH is written to the effective address.

Operation

Exceptions

WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

STS.L MACH, @-Rn

0100 n 00000010

15 12 11 8 7 0

mach ← SignExtend32(MACH);
op1 ← SignExtend32(Rn);
address ← ZeroExtend32(op1 - 4);
WriteMemory32(address, mach);
op1 ← address;
Rn ← Register(op1);

Alphabetical list of instructions 469
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

STS MACL, Rn
Description

This instruction copies MACL to Rn.

Operation

STS MACL, Rn

0000 n 00011010

15 12 11 8 7 0

macl ← SignExtend32(MACL);
op1 ← macl;
Rn ← Register(op1);

470 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

STS.L MACL, @-Rn
Description

This instruction stores MACL to memory using register indirect with pre-decrement
addressing. Rn is pre-decremented by 4 to give the effective address. The 32-bit
value of MACL is written to the effective address.

Operation

Exceptions

WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

STS.L MACL, @-Rn

0100 n 00010010

15 12 11 8 7 0

macl ← SignExtend32(MACL);
op1 ← SignExtend32(Rn);
address ← ZeroExtend32(op1 - 4);
WriteMemory32(address, macl);
op1 ← address;
Rn ← Register(op1);

Alphabetical list of instructions 471
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

STS PR, Rn
Description

This instruction copies PR to Rn.

Operation

Note

STS PR, Rn

0000 n 00101010

15 12 11 8 7 0

pr ← SignExtend32(PR’);
op1 ← pr;
Rn ← Register(op1);

472 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

STS.L PR, @-Rn
Description

This instruction stores PR to memory using register indirect with pre-decrement
addressing. Rn is pre-decremented by 4 to give the effective address. The 32-bit
value of PR is written to the effective address.

Operation

Exceptions

WADDERR, WTLBMISS, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

STS.L PR, @-Rn

0100 n 00100010

15 12 11 8 7 0

pr ← SignExtend32(PR’);
op1 ← SignExtend32(Rn);
address ← ZeroExtend32(op1 - 4);
WriteMemory32(address, pr);
op1 ← address;
Rn ← Register(op1);

Alphabetical list of instructions 473
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

SUB Rm, Rn
Description

This instruction subtracts Rm from Rn and places the result in Rn.

Operation

Note

SUB Rm, Rn

0011 n m 1000

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← SignExtend32(Rn);
op2 ← op2 - op1;
Rn ← Register(op2);

474 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

SUBC Rm, Rn
Description

This instruction subtracts Rm and the T-bit from Rn and places the result in Rn. The
borrow from the subtraction is placed in the T-bit.

Operation

Note

SUBC Rm, Rn

0011 n m 1010

15 12 11 8 7 4 3 0

t ← ZeroExtend1(T);
op1 ← ZeroExtend32(SignExtend32(Rm));
op2 ← ZeroExtend32(SignExtend32(Rn));
op2 ← (op2 - op1) - t;
t ← op2< 32 FOR 1 >;
Rn ← Register(op2);
T ← Bit(t);

Alphabetical list of instructions 475
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

SUBV Rm, Rn
Description

This instruction subtracts Rm from Rn and places the result in Rn. The T-bit is set to
1 if the subtraction result is outside the 32-bit signed range, otherwise the T-bit is
set to 0.

Operation

Note

SUBV Rm, Rn

0011 n m 1011

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← SignExtend32(Rn);
op2 ← op2 - op1;

t ← INT ((op2 < (- 231)) OR (op2 ≥ 231));
Rn ← Register(op2);
T ← Bit(t);

476 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

SWAP.B Rm, Rn
Description

This instruction swaps the values of the lower 2 bytes in Rm and places the result in
Rn. Bits [0,7] take the value of bits [8,15]. Bits [8,15] take the value of bits [0,7]. Bits
[16,31] are unchanged.

Operation

Note

SWAP.B Rm, Rn

0110 n m 1000

15 12 11 8 7 4 3 0

op1 ← ZeroExtend32(Rm);
op2 ← ((op1< 16 FOR 16 > << 16) ∨ (op1< 0 FOR 8 > << 8)) ∨ op1< 8 FOR 8 >;
Rn ← Register(op2);

Alphabetical list of instructions 477
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

SWAP.W Rm, Rn
Description

This instruction swaps the values of the 2 words in Rm and places the result in Rn.
Bits [0,15] take the value of bits [16,31]. Bits [16,31] take the value of bits [0,15].

Operation

Note

SWAP.W Rm, Rn

0110 n m 1001

15 12 11 8 7 4 3 0

op1 ← ZeroExtend32(Rm);
op2 ← (op1< 0 FOR 16 > << 16) ∨ op1< 16 FOR 16 >;
Rn ← Register(op2);

478 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

TAS.B @Rn
Description

This instruction performs a test-and-set operation on the byte data at the effective
address specified in Rn. It begins by purging the operand cache block containing the
accessed memory location. The 8 bits of data at the effective address are read from
memory. If the read data is 0 the T-bit is set, otherwise the T-bit is cleared. The
highest bit of the 8-bit data (bit 7) is set, and the result is written back to the
memory at the same effective address.

This test-and-set is atomic from the CPU perspective. This instruction cannot be
interrupted during its operation.

Operation

Exceptions

WADDERR, WTLBMISS, READPROT, WRITEPROT, FIRSTWRITE

Note

The TAS.B instruction guarantees atomicity of access to all components of the core
but not necessarily the entire address space. Refer to the system architecture
manual of the appropriate product to determine the properties of individual targets
in the address map.

TAS.B @Rn

0100 n 00011011

15 12 11 8 7 0

op1 ← SignExtend32(Rn);
address ← ZeroExtend32(op1);
OCBP(address)
value ← ZeroExtend8(ReadMemory8(address));
t ← INT (value = 0);
value ← value ∨ (1 << 7);
WriteMemory8(address, value);
T ← Bit(t);

Alphabetical list of instructions 479
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

TRAPA #imm
Description

This instruction causes a pre-execution trap. The value of the zero-extended 8-bit
immediate i is used by the handler launch sequence to characterize the trap.

Operation

Exceptions

ILLSLOT, TRAP

Note

An ILLSLOT exception is raised if this instruction is executed in a delay slot.

The ‘#imm’ in the assembly syntax represents the immediate i after zero extension.

TRAPA #imm

11000011 i

15 8 7 0

imm ← ZeroExtend8(i);
IF (IsDelaySlot())

THROW ILLSLOT;
THROW TRAP, imm;

480 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

TST Rm, Rn
Description

This instruction performs a bitwise AND of Rm with Rn. If the result is 0, the T-bit is
set, otherwise the T-bit is cleared.

Operation

Note

TST Rm, Rn

0010 n m 1000

15 12 11 8 7 4 3 0

op1 ← SignExtend32(Rm);
op2 ← SignExtend32(Rn);
t ← INT ((op1 ∧ op2) = 0);
T ← Bit(t);

Alphabetical list of instructions 481
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

TST #imm, R0
Description

This instruction performs a bitwise AND of R0 with the zero-extended 8-bit
immediate i. If the result is 0, the T-bit is set, otherwise the T-bit is cleared.

Operation

Note

The ‘#imm’ in the assembly syntax represents the immediate i after zero extension.

TST #imm, R0

11001000 i

15 8 7 0

r0 ← SignExtend32(R0);
imm ← ZeroExtend8(i);
t ← INT ((r0 ∧ imm) = 0);
T ← Bit(t);

482 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

TST.B #imm, @(R0, GBR)
Description

This instruction performs a bitwise test of an immediate constant with 8 bits of data
held in memory. The effective address is calculated by adding R0 and GBR. The 8
bits of data at the effective address are read. A bitwise AND is performed of the read
data with the zero-extended 8-bit immediate i. If the result is 0, the T-bit is set,
otherwise the T-bit is cleared.

Operation

Exceptions

RADDERR, RTLBMISS, READPROT

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

The ‘#imm’ in the assembly syntax represents the immediate i after zero extension.

TST.B #imm, @(R0, GBR)

11001100 i

15 8 7 0

r0 ← SignExtend32(R0);
gbr ← SignExtend32(GBR);
imm ← ZeroExtend8(i);
address ← ZeroExtend32(r0 + gbr);
value ← ZeroExtend8(ReadMemory8(address));
t ← ((value ∧ imm) = 0);
T ← Bit(t);

Alphabetical list of instructions 483
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

XOR Rm, Rn
Description

This instruction performs a bitwise XOR of Rm with Rn and places the result in Rn.

Operation

Note

XOR Rm, Rn

0010 n m 1010

15 12 11 8 7 4 3 0

op1 ← ZeroExtend32(Rm);
op2 ← ZeroExtend32(Rn);
op2 ← op2 ⊕ op1;
Rn ← Register(op2);

484 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

XOR #imm, R0
Description

This instruction performs a bitwise XOR of R0 with the zero-extended 8-bit
immediate i and places the result in R0.

Operation

Note

The ‘#imm’ in the assembly syntax represents the immediate i after zero extension.

XOR #imm, R0

11001010 i

15 8 7 0

r0 ← ZeroExtend32(R0);
imm ← ZeroExtend8(i);
r0 ← r0 ⊕ imm;
R0 ← Register(r0);

Alphabetical list of instructions 485
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

XOR.B #imm, @(R0, GBR)
Description

This instruction performs a bitwise XOR of an immediate constant with 8 bits of
data held in memory. The effective address is calculated by adding R0 and GBR. The
8 bits of data at the effective address are read. A bitwise XOR is performed of the
read data with the zero-extended 8-bit immediate i. The result is written back to the
8 bits of data at the same effective address.

Operation

Exceptions

WADDERR, WTLBMISS, READPROT, WRITEPROT, FIRSTWRITE

Note

The effective address calculation is performed using 32-bit zero extension to cause
wrap around if the address-space bounds are exceeded.

The ‘#imm’ in the assembly syntax represents the immediate i after zero extension.

XOR.B #imm, @(R0, GBR)

11001110 i

15 8 7 0

r0 ← SignExtend32(R0);
gbr ← SignExtend32(GBR);
imm ← ZeroExtend8(i);
address ← ZeroExtend32(r0 + gbr);
value ← ZeroExtend8(ReadMemory8(address));
value ← value ⊕ imm;
WriteMemory8(address, value);

486 Alphabetical list of instructions
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

XTRCT Rm, Rn
Description

This instruction extracts the lower 16-bit word from Rm and the upper 16-bit word
from Rn, swaps their order, and places the result in Rn. Bits [0,15] of Rn take the
value of bits [16,31] of the original Rn. Bits [16,31] of Rn take the value of bits [0,15]
of Rm.

Operation

Note

XTRCT Rm, Rn

0010 n m 1101

15 12 11 8 7 4 3 0

op1 ← ZeroExtend32(Rm);
op2 ← ZeroExtend32(Rn);
op2 ← op2< 16 FOR 16 > ∨ (op1< 0 FOR 16 > << 16);
Rn ← Register(op2);

PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

10Pipelining

The SH-4 CPU core is a dual-issue superscalar pipelining microprocessor. This
section gives a high-level description of the way in which this particular
implementation of the SH4 architecture executes instructions. Definitions in this
section may not be applicable to SH-4 Series models other than the SH-4 CPU core.

10.1 Pipelines
Figure 34 shows the basic pipelines. Normally, a pipeline consists of five or six
stages: instruction fetch (I), decode and register read (D), execution (EX/SX/F0/F1/
F2/F3), data access (NA/MA), and write-back (S/FS). An instruction is executed as a
combination of basic pipelines. Figure 35 to Figure 39 show the instruction
execution patterns.

488 Pipelines
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Figure 34: Basic pipelines

1. General Pipeline

• Instruction fetch • Instruction
decode

• Issue
• Register read
• Destination address calculation

for PC-relative branch

• Non-memory
 data access

• Write-back

I D EX

• Operation

NA S

2. General Load/Store Pipeline

• Instruction fetch • Instruction
decode

• Issue
• Register read

• Memory
 data access

• Write-back

I D EX

• Address
 calculation

MA S

3. Special Pipeline

• Instruction fetch • Instruction
decode

• Issue
• Register read

• Non-memory
 data access

• Write-back

I D SX

• Operation

NA S

4. Special Load/Store Pipeline

• Instruction fetch • Instruction
decode

• Issue
• Register read

• Memory
 data access

• Write-back

I D SX

• Address
 calculation

MA S

5. Floating-Point Pipeline

• Instruction fetch • Instruction
decode

• Issue
• Register read

• Computation 2 • Computation 3
• Write-back

I D F1

• Computation 1

F2 FS

6. Floating-Point Extended Pipeline

• Instruction fetch • Instruction
decode

• Issue
• Register read

• Computation 1 • Computation 3
• Write-back

I D F0

• Computation 0

F1 F2 FS

• Computation 2

F3

Computation: Takes several cycles

7. FDIV/FSQRT Pipeline

Pipelines 489
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Figure 35: Instruction execution patterns

1. 1-step operation: 1 issue cycle
EXT[SU].[BW], MOV, MOV#, MOVA, MOVT, SWAP.[BW], XTRCT, ADD*, CMP*,
DIV*, DT, NEG*, SUB*, AND, AND#, NOT, OR, OR#, TST, TST#, XOR, XOR#,
ROT*, SHA*, SHL*, BF*, BT*, BRA, NOP, CLRS, CLRT, SETS, SETT,
LDS to FPUL, STS from FPUL/FPSCR, FLDI0, FLDI1, FMOV, FLDS, FSTS,
single-/double-precision FABS/FNEG

I D EX NA S

2. Load/store: 1 issue cycle
MOV.[BWL]. FMOV*@, LDS.L to FPUL, LDTLB, PREF, STS.L from FPUL/FPSCR

I D EX MA S

3. GBR-based load/store: 1 issue cycle
MOV.[BWL]@(d,GBR)

I D SX MA S

4. JMP, RTS, BRAF: 2 issue cycles
I D EX NA S

D EX NA S

5. TST.B: 3 issue cycles

I D SX MA S
D SX NA S

D SX NA S

6. AND.B, OR.B, XOR.B: 4 issue cycles
I D SX MA S

D SX NA S
D SX NA S

D SX MA S

7. TAS.B: 5 issue cycles

I D EX MA S
D EX MA S

D EX NA S
D EX NA S

D EX MA S

8. RTE: 5 issue cycles
I D EX NA S

D EX NA S
D EX NA S

D EX NA S
D EX NA S

9. SLEEP: 4 issue cycles

I D EX NA S
D EX NA S

D EX NA S
D EX NA S

490 Pipelines
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Figure 36: Instruction execution patterns (continued)

10. OCBI: 1 issue cycle
I D EX MA S

MA

11. OCBP, OCBWB: 1 issue cycle
I D EX MA S

MA
MA

MA
MA

12. MOVCA.L: 1 issue cycle
I D EX MA S

MA
MA

MA
MA

MA
MA

13. TRAPA: 7 issue cycles
I D EX NA S

D EX NA S
D EX NA S

D EX NA S
D EX NA S

D EX NA S
D EX NA S

14. CR definition: 1 issue cycle
LDC to DBR/Rp_BANK/SSR/SPC/VBR, BSR

I D EX NA S
SX

SX

15. LDC to GBR: 3 issue cycles
I D EX NA S

D
D
SX

SX

16. LDC to SR: 4 issue cycles
I D EX NA S

D
D

D

SX
SX

SX

I D EX MA S

17. LDC.L to DBR/Rp_BANK/SSR/SPC/VBR: 1 issue cycle

SX
SX

18. LDC.L to GBR: 3 issue cycles

I D EX MA S
D

D
SX

SX

Pipelines 491
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Figure 37: Instruction execution patterns (continued)

19. LDC.L to SR: 4 issue cycles
I D EX MA S

D
D

D

SX
SX

SX

20. STC from DBR/GBR/Rp_BANK/SR/SSR/SPC/VBR: 2 issue cycles
I D SX NA S

D SX NA S

21. STC.L from SGR: 3 issue cycles
I D SX NA S

D SX NA S
D SX NA S

22. STC.L from DBR/GBR/Rp_BANK/SR/SSR/SPC/VBR: 2 issue cycles

I D SX NA S
D SX MA S

23. STC.L from SGR: 3 issue cycles
I D SX NA S

D SX NA S
D SX MA S

24. LDS to PR, JSR, BSRF: 2 issue cycles
I D EX NA S

D SX
SX

25. LDS.L to PR: 2 issue cycles
I D EX MA S

D SX
SX

26. STS from PR: 2 issue cycles
I D SX NA S

D SX NA S

27. STS.L from PR: 2 issue cycles

I D SX NA S
D SX MA S

28. MACH/L definition: 1 issue cycle
CLRMAC, LDS to MACH/L

I D EX NA S
F1

F1 F2 FS

29. LDS.L to MACH/L: 1 issue cycle
I D EX MA S

F1
F1 F2 FS

30. STS from MACH/L: 1 issue cycle

I D EX NA S

492 Pipelines
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Figure 38: Instruction execution patterns (continued)

31. STS.L from MACH/L: 1 issue cycle
I D EX MA S

32. LDS to FPSCR: 1 issue cycle

I D EX NA S
F1

F1
F1

F1
F1

F1

33. LDS.L to FPSCR: 1 issue cycle
I D EX MA S

34. Fixed-point multiplication: 2 issue cycles
DMULS.L, DMULU.L, MUL.L, MULS.W, MULU.W

I D EX NA S (CPU)
D EX NA S

f1 (FPU)
f1

f1
f1 F2 FS

35. MAC.W, MAC.L: 2 issue cycles
I D EX MA S (CPU)

D EX MA S

f1 (FPU)
f1

f1
f1 F2 FS

36. Single-precision floating-point computation: 1 issue cycle
FCMP/EQ,FCMP/GT, FADD,FLOAT,FMAC,FMUL,FSUB,FTRC,FRCHG,FSCHG

I D F1 F2 FS

37. Single-precision FDIV/SQRT: 1 issue cycle

I D F1 F2 FS
F3

F1 F2 FS

38. Double-precision floating-point computation 1: 1 issue cycle
 FCNVDS, FCNVSD, FLOAT, FTRC

I D F1 F2 FS
d F1 F2 FS

39. Double-precision floating-point computation 2: 1 issue cycle
 FADD, FMUL, FSUB

I D F1 F2 FS
d F1 F2 FS

d F1 F2 FS
d F1 F2 FS

d F1 F2 FS

F1 F2 FS

Pipelines 493
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Figure 39: Instruction execution patterns (continued)

I D F1 F2 FS
D F1 F2 FS

40. Double-precision FCMP: 2 issue cycles
FCMP/EQ,FCMP/GT

I D F1 F2 FS

F3
F1 F2 F3

41. Double-precision FDIV/SQRT: 1 issue cycle
 FDIV, FSQRT

F1 F2d

F1 F2 F3
F1 F2 F3

42. FIPR: 1 issue cycle
I D F0 F1 F2 FS

43. FTRV: 1 issue cycle
F1 F2 FSD F0I

F1 F2 FSd F0
F1 F2 FSd F0

F1 F2 FSd F0

Notes: ??

: Locks D-stage

: Register read only

: Locks, but no operation is executed.

: Can overlap another f1, but not another F1.

d

D

??

f1

: Cannot overlap a stage of the same kind, except when two instructions are
executed in parallel.

494 Parallel-executability
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

10.2 Parallel-executability
Instructions are categorized into six groups according to the internal function blocks
used, as shown in table 8.1. Table 8.2 shows the parallel-executability of pairs of
instructions in terms of groups. For example, ADD in the EX group and BRA in the
BR group can be executed in parallel.

1. MT Group

CLRT CMP/HI Rm,Rn MOV Rm,Rn

CMP/EQ #imm,R0 CMP/HS Rm,Rn NOP

CMP/EQ Rm,Rn CMP/PL Rn SETT

CMP/GE Rm,Rn CMP/PZ Rn TST #imm,R0

CMP/GT Rm,Rn CMP/STR Rm,Rn TST Rm,Rn

2. EX Group

ADD #imm,Rn MOVT Rn SHLL2 Rn

ADD Rm,Rn NEG Rm,Rn SHLL8 Rn

ADDC Rm,Rn NEGC Rm,Rn SHLR Rn

ADDV Rm,Rn NOT Rm,Rn SHLR16 Rn

AND #imm,R0 OR #imm,R0 SHLR2 Rn

AND Rm,Rn OR Rm,Rn SHLR8 Rn

DIV0S Rm,Rn ROTCL Rn SUB Rm,Rn

DIV0U ROTCR Rn SUBC Rm,Rn

DIV1 Rm,Rn ROTL Rn SUBV Rm,Rn

DT Rn ROTR Rn SWAP.B Rm,Rn

EXTS.B Rm,Rn SHAD Rm,Rn SWAP.W Rm,Rn

EXTS.W Rm,Rn SHAL Rn XOR #imm,R0

EXTU.B Rm,Rn SHAR Rn XOR Rm,Rn

EXTU.W Rm,Rn SHLD Rm,Rn XTRCT Rm,Rn

Table 73: Instruction groups

Parallel-executability 495
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

MOV #imm,Rn SHLL Rn

MOVA @(disp,PC),R0 SHLL16 Rn

3. BR Group

BF disp BRA disp BT disp

BF/S disp BSR disp BT/S disp

4. LS Group

FABS DRn FMOV.S @Rm+,FRn MOV.L R0,@(disp,GBR)

FABS FRn FMOV.S FRm,@(R0,Rn) MOV.L Rm,@(disp,Rn)

FLDI0 FRn FMOV.S FRm,@-Rn MOV.L Rm,@(R0,Rn)

FLDI1 FRn FMOV.S FRm,@Rn MOV.L Rm,@-Rn

FLDS FRm,FPUL FNEG DRn MOV.L Rm,@Rn

FMOV @(R0,Rm),DRn FNEG FRn MOV.W @(disp,GBR),R0

FMOV @(R0,Rm),XDn FSTS FPUL,FRn MOV.W @(disp,PC),Rn

FMOV @Rm,DRn LDS Rm,FPUL MOV.W @(disp,Rm),R0

FMOV @Rm,XDn MOV.B @(disp,GBR),R0 MOV.W @(R0,Rm),Rn

FMOV @Rm+,DRn MOV.B @(disp,Rm),R0 MOV.W @Rm,Rn

FMOV @Rm+,XDn MOV.B @(R0,Rm),Rn MOV.W @Rm+,Rn

FMOV DRm,@(R0,Rn) MOV.B @Rm,Rn MOV.W R0,@(disp,GBR)

FMOV DRm,@-Rn MOV.B @Rm+,Rn MOV.W R0,@(disp,Rn)

FMOV DRm,@Rn MOV.B R0,@(disp,GBR) MOV.W Rm,@(R0,Rn)

FMOV DRm,DRn MOV.B R0,@(disp,Rn) MOV.W Rm,@-Rn

FMOV DRm,XDn MOV.B Rm,@(R0,Rn) MOV.W Rm,@Rn

FMOV FRm,FRn MOV.B Rm,@-Rn MOVCA.L R0,@Rn

FMOV XDm,@(R0,Rn) MOV.B Rm,@Rn OCBI @Rn

FMOV XDm,@-Rn MOV.L @(disp,GBR),R0 OCBP @Rn

Table 73: Instruction groups

496 Parallel-executability
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FMOV XDm,@Rn MOV.L @(disp,PC),Rn OCBWB @Rn

FMOV XDm,DRn MOV.L @(disp,Rm),Rn PREF @Rn

FMOV XDm,XDn MOV.L @(R0,Rm),Rn STS FPUL,Rn

FMOV.S @(R0,Rm),FRn MOV.L @Rm,Rn

FMOV.S @Rm,FRn MOV.L @Rm+,Rn

5. FE Group

FADD DRm,DRn FIPR FVm,FVn FSQRT DRn

FADD FRm,FRn FLOAT FPUL,DRn FSQRT FRn

FCMP/EQ FRm,FRn FLOAT FPUL,FRn FSUB DRm,DRn

FCMP/GT FRm,FRn FMAC FR0,FRm,FRn FSUB FRm,FRn

FCNVDS DRm,FPUL FMUL DRm,DRn FTRC DRm,FPUL

FCNVSD FPUL,DRn FMUL FRm,FRn FTRC FRm,FPUL

FDIV DRm,DRn FRCHG FTRV XMTRX,FVn

FDIV FRm,FRn FSCHG

6. CO Group

AND.B #imm,@(R0,GBR) LDS Rm,FPSCR STC SR,Rn

BRAF Rm LDS Rm,MACH STC SSR,Rn

BSRF Rm LDS Rm,MACL STC VBR,Rn

CLRMAC LDS Rm,PR STC.L DBR,@-Rn

CLRS LDS.L @Rm+,FPSCR STC.L GBR,@-Rn

DMULS.L Rm,Rn LDS.L @Rm+,FPUL STC.L Rp_BANK,@-Rn

DMULU.L Rm,Rn LDS.L @Rm+,MACH STC.L SGR,@-Rn

FCMP/EQ DRm,DRn LDS.L @Rm+,MACL STC.L SPC,@-Rn

FCMP/GT DRm,DRn LDS.L @Rm+,PR STC.L SR,@-Rn

JMP @Rn LDTLB STC.L SSR,@-Rn

Table 73: Instruction groups

Parallel-executability 497
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

JSR @Rn MAC.L @Rm+,@Rn+ STC.L VBR,@-Rn

LDC Rm,DBR MAC.W @Rm+,@Rn+ STS FPSCR,Rn

LDC Rm,GBR MUL.L Rm,Rn STS MACH,Rn

LDC Rm,Rp_BANK MULS.W Rm,Rn STS MACL,Rn

LDC Rm,SPC MULU.W Rm,Rn STS PR,Rn

LDC Rm,SR OR.B #imm,@(R0,GBR) STS.L FPSCR,@-Rn

LDC Rm,SSR RTE STS.L FPUL,@-Rn

LDC Rm,VBR RTS STS.L MACH,@-Rn

LDC.L @Rm+,DBR SETS STS.L MACL,@-Rn

LDC.L @Rm+,GBR SLEEP STS.L PR,@-Rn

LDC.L @Rm+,Rp_BANK STC DBR,Rn TAS.B @Rn

LDC.L @Rm+,SPC STC GBR,Rn TRAPA #imm

LDC.L @Rm+,SR STC Rp_BANK,Rn TST.B #imm,@(R0,GBR)

LDC.L @Rm+,SSR STC SGR,Rn XOR.B #imm,@(R0,GBR)

LDC.L @Rm+,VBR STC SPC,Rn

Table 73: Instruction groups

498 Execution cycles and pipeline stalling
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

O: Can be executed in parallel

X: Cannot be executed in parallel

10.3 Execution cycles and pipeline stalling
Instruction execution cycles are summarized in Table 75: Execution cycles on
page 505. Penalty cycles due to a pipeline stall or freeze are not considered in this
table.

• Issue rate: Interval between the issue of an instruction and that of the next
instruction

• Latency: Interval between the issue of an instruction and the generation of its
result (completion)

• Instruction execution pattern (see Figure 35 to Figure 39)

• Locked pipeline stages

• Interval between the issue of an instruction and the start of locking

• Lock time: Period of locking in machine cycle units

2nd Instruction

MT EX BR LS FE CO

1st Instruction MT O O O O O X

EX O X O O O X

BR O O X O O X

LS O O O X O X

FE O O O O X X

CO X X X X X X

Table 74: Parallel-executability

Execution cycles and pipeline stalling 499
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

The instruction execution sequence is expressed as a combination of the execution
patterns shown in Figure 35 to Figure 39. One instruction is separated from the
next by the number of machine cycles for its issue rate. Normally, execution, data
access, and write-back stages cannot be overlapped onto the same stages of another
instruction; the only exception is when two instructions are executed in parallel
under parallel-executability conditions. Refer to (a) through (d) in Figure 40 for
some simple examples.

Latency is the interval between issue and completion of an instruction, and is also
the interval between the execution of two instructions with an interdependent
relationship. When there is interdependency between two instructions fetched
simultaneously, the latter of the two is stalled for the following number of cycles:

• (Latency) cycles when there is flow dependency (read-after-write)

• (Latency - 1) or (latency - 2) cycles when there is output dependency
(write-after-write)

- Single/double-precision FDIV, FSQRT is the preceding instruction (latency -
1) cycles

- The other FE group except above is the preceding instruction (latency - 2)
cycles

• 5 or 2 cycles when there is anti-flow dependency (write-after-read), as in the
following cases:

- FTRV is the preceding instruction (5 cycle)

- A double-precision FADD, FSUB, or FMUL is the preceding instruction (2
cycles)

In the case of flow dependency, latency may be exceptionally increased or decreased,
depending on the combination of sequential instructions (Figure 41 (e)).

• When a floating-point (FP) computation is followed by an FP register store, the
latency of the FP computation may be decreased by 1 cycle.

• If there is a load of the shift amount immediately before an SHAD/SHLD
instruction, the latency of the load is increased by 1 cycle.

• If an instruction with a latency of less than 2 cycles, including write-back to an
FP register, is followed by a double-precision FP instruction, FIPR, or FTRV, the
latency of the first instruction is increased to 2 cycles.

The number of cycles in a pipeline stall due to flow dependency will vary depending
on the combination of interdependent instructions or the fetch timing (see Figure 41
(e)).

500 Execution cycles and pipeline stalling
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Output dependency occurs when the destination operands are the same in a
preceding FE group instruction and a following LS group instruction.

For the stall cycles of an instruction with output dependency, the longest latency to
the last write-back among all the destination operands must be applied instead of
latency-2 (see Figure 42 (f)). A stall due to output dependency with respect to
FPSCR, which reflects the result of an FP operation, never occurs. For example,
when FADD follows FDIV with no dependency between FP registers, FADD is not
stalled even if both instructions update the cause field of FPSCR.

Anti-flow dependency can occur only between a preceding double-precision FADD,
FMUL, FSUB, or FTRV and a following FMOV, FLDI0, FLDI1, FABS, FNEG, or
FSTS. See Figure 42 (g).

If an executing instruction locks any resource, i.e. a function block that performs a
basic operation, a following instruction that happens to attempt to use the locked
resource must be stalled (Figure 43 (h)). This kind of stall can be compensated by
inserting one or more instructions independent of the locked resource to separate
the interfering instructions. For example, when a load instruction and an ADD
instruction that references the loaded value are consecutive, the 2-cycle stall of the
ADD is eliminated by inserting three instructions without dependency. Software
performance can be improved by such instruction scheduling.

Other penalties arise in the event of exceptions or external data accesses, as follows.

• Instruction TLB miss: a penalty of 7 CPU clocks

• Instruction access to external memory (instruction cache miss, etc.)

• Data access to external memory (operand cache miss, etc.)

• Data access to a memory-mapped control register. The penalty differs from
register to register, and depends on the kind of operation (read or write), the
clock mode, and the bus use conditions when the access is made.

During the penalty cycles of an instruction TLB miss or external instruction access,
no instruction is issued, but execution of instructions that have already been issued
continues. The penalty for a data access is a pipeline freeze: that is, the execution of
uncompleted instructions is interrupted until the arrival of the requested data. The
number of penalty cycles for instruction and data accesses is largely dependent on
the user’s memory subsystems.

Execution cycles and pipeline stalling 501
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Figure 40: Examples of pipelined execution

(a) Serial execution: non-parallel-executable instructions

ADD R2,R1
MOV.L @R4,R5

MOV R1,R2
next

SHAD R0,R1
ADD R2,R3
next

I D EX NA S
I D EX NA S

I D ...

1 stall cycle

(b) Parallel execution: parallel-executable and no dependency

I D EX NA S
I D EX MA S

(c) Issue rate: multi-step instruction

AND.B#1,@(R0,GBR) I D SX MA S

D SX MA S
D SX NA S

D SX NA S

I
I

(d) Branch

1 issue cycle

1 issue cycle

4 issue cycles

...

I D EX NA S
I D EX NA S

2-cycle latency for I-stage of branch destination

1 stall cycle
I D

I D EX NA S
I D EX NA S

I D EX NA S

BT/S L_far
ADD R0,R1
SUB R2,R3

BT/S L_far
ADD R0,R1

L_far

I D EX NA S
I D

I D

— — —
...

No stall

BT L_skip
ADD #1,R0
L_skip:

...

i D E A S

4 stall cycles

EX-group SHAD and EX-group ADD
cannot be executed in parallel. Therefore,
SHAD is issued first, and the following
ADD is recombined with the next
instruction.

EX-group ADD and LS-group MOV.L can
be executed in parallel. Overlapping of
stages in the 2nd instruction is possible.

AND.B and MOV are fetched
simultaneously, but MOV is stalled due to
resource locking. After the lock is released,
MOV is refetched together with the next
instruction.

No stall occurs if the branch is not taken.

If the branch is taken, the I-stage of the
branch destination is stalled for the period
of latency. This stall can be covered with a
delay slot instruction which is not parallel-
executable with the branch instruction.

Even if the BT/BF branch is taken, the I-
stage of the branch destination is not
stalled if the displacement is zero.

502 Execution cycles and pipeline stalling
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Figure 41: Examples of pipelined execution (continued)

(e) Flow dependency

I D EX NA S
I D EX NA S

MOV R0,R1
ADD R2,R1

ADD R2,R1
MOV.L @R1,R1
next

I D EX NA S
I D EX MA Si

I ...

...

...

Zero-cycle latency

1-cycle latency

1 stall cycle

MOV.L @R1,R1
ADD R0,R1
next

I D EX MA S
I D
I

EX NA SD

EX NA S

2-cycle latency

1 stall cycle

MOV.L @R1,R1
SHAD R1,R2
next

FADD FR1,FR2
STS FPUL,R1
STS FPSCR,R2

I D EX NA S
I

4-cycle latency for FPSCR

2 stall cycles

I D F1 F2 FS

I D EX MA S
I D
I

2-cycle latency

2 stall cycles

EX NA Sd

1-cycle increase

I
I

I D F1 F2 FS
d F1 F2 FS

d F1 F2 FS
d F1 F2 FS

F1 F2 FS
d F1 F2 FS

EX NA SD
EX NA SD

FADD DR0,DR2

7-cycle latency for lower FR
8-cycle latency for upper FR

FMOV FR3,FR5
FMOV FR2,FR4

FLOAT FPUL,DR0
FMOV.S FR1,@-R15

FR3 write
FR2 write

I D F1 F2 FS
d F1 F2 FS

I D EX MA S

3-cycle latency for lower FR
4-cycle latency for upper FR

FR1 write
FR0 write

FLDI1 FR3
FIPR FV0,FV4

FMOV @R1,XD14
FTRV XMTRX,FV0

I D EX NA S
I D d F0 F1 F2 FS

Zero-cycle latency
3-cycle increase

3 stall cycles

I D EX MA S
I D d F0 F1 F2 FS

d F0 F1 FSF2
d F0 F2F1 FS

d F1F0 F2 FS

2-cycle latency
1-cycle increase

3 stall cycles

The following instruction, ADD, is not
stalled when executed after an instruction
with zero-cycle latency, even if there is
dependency.

ADD and MOV.L are not executed in
parallel, since MOV.L references the result
of ADD as its destination address.

Because MOV.L and ADD are not fetched
simultaneously in this example, ADD is
stalled for only 1 cycle even though the
latency of MOV.L is 2 cycles.

Due to the flow dependency between the
load and the SHAD/SHLD shift amount,
the latency of the load is increased to 3
cycles.

The latency of FLOAT is decreased by 1
cycle, only if followed by a lower FR store.
This decrease does not apply to an upper
FR store.

Execution cycles and pipeline stalling 503
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Figure 42: Examples of pipelined execution (continued)

I D EX NA S

I D EX NA S
D F1 F2 FS

D F1 F2 FS

(e) Flow dependency (cont)

I

I

LDS R0,FPUL
FLOAT FPUL,FR0
LDS R1,FPUL
FLOAT FPUL,R1

Effectively 1-cycle latency for consecutive LDS/FLOAT instructions

I D EX NA S
D F1 F2 FSI

D F1 F2 FSI
I D EX NA S

Effectively 1-cycle latency for consecutive
FTRC/STS instructions

FTRC FR0,FPUL
STS FPUL,R0
FTRC FR1,FPUL
STS FPUL,R1

(f) Output dependency

D F1 F2 FSI

I D
F1 F2 FS

F1 F2 FS

11-cycle latency

9 stall cycles = latency (11) - 2
The registers are written-back
in program order.

D F1 F2 FSI
d F1 F2 FS

d F1 F2 FS
d F1 F2 FS

d F1 F2 FS

F1 F2 FS
EX NA SI D

7-cycle latency for lower FR
8-cycle latency for upper FR

6 stall cycles = longest latency (8) - 2

FR2 write
FR3 write

D F1 F2 FSI
d F1 F2 FS

d F1 F2 FS
d F1

F0
F0

F0
F0 F2 FS

(g) Anti-flow dependency

EX MA SI D
1 stall cycle

D F1 F2 FSI
d F1 F2 FS

d F1 F2 FS
d F1 F2 FS

EX NA SI D
2 stall cycles

d F1 F2 FS
F1 F2 FS

FSQRT FR4

FMOV FR0,FR4

FADD DR0,DR2

FMOV FR0,FR3

FTRV XMTRX,FV0

FMOV @R1,XD0

FADD DR0,DR2

FMOV FR4,FR1

F3

504 Execution cycles and pipeline stalling
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Figure 43: Examples of pipelined execution (continued)

(h) Resource conflict

I D F1 F2 FS
F3

F1 F2 FS

D F1 F2 FSI
D F1 F2 FSI

D F1 F2 FSI

I D F1 F2 FS

F1 stage locked for 1 cycle

Latency
1 cycle/issue

1 stall cycle (F1 stage resource conflict)

FDIV FR7

FMAC FR0,FR8,FR9
FMAC FR0,FR10,FR11
FMAC FR0,FR12,FR13
FMAC FR0,FR14,FR15

FIPR FV8,FV0
FADD FR15,FR4

I D F1F0 F2 FS
I D F1 F2 FS

1 stall cycle

LDS.L @R15+,PR I D EX MA FS
D SX

SX
SX NA S

SX NA SD
I

3 stall cycles

STC GBR,R2

FADD DR0,DR2 I D F1 F2 FS
d F1 F2 FS

d F1 F2 FS
d F1 F2 FS

d F1 F2 FS

F1 F2 FS
EX MA S
f1

EX MA SD
f1

f1 F2 FS
f1 F2 FS

I D
5 stall cycles

MAC.W @R1+,@R2+

I D EX MA S
f1

f1
f1 F2 FS

f1 F2 FS
I

f1
D EX MA S
f1

D EX MA S

f1 F2 FS
f1 F2 FS

F1 F2 FS
d F1 F2 FS

d F1 F2 FS
d F1 F2 FS

d F1 F2 FS

F1 ...

I D
3 stall cycles

1 stall
cycle

2 stall cycles

MAC.W @R1+,@R2+

MAC.W @R1+,@R2+

FADD DR4,DR6

f1 stage can overlap preceding f1,
but F1 cannot overlap f1.

D EX MA S

#1 #2 #3 ... #10 #11 #12

D

Execution cycles and pipeline stalling 505
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Functional
category

No Instruction
Instruction

group
Issue
rate

Latency
Execution

pattern

Lock

S
ta

g
e

S
ta

rt

C
yc

le
s

Data transfer
instructions

1 EXTS.B Rm,Rn EX 1 1 #1 - - -

2 EXTS.W Rm,Rn EX 1 1 #1 - - -

3 EXTU.B Rm,Rn EX 1 1 #1 - - -

4 EXTU.W Rm,Rn EX 1 1 #1 - - -

5 MOV Rm,Rn MT 1 0 #1 - - -

6 MOV #imm,Rn EX 1 1 #1 - - -

7 MOVA @(disp,PC),R0 EX 1 1 #1 - - -

8 MOV.W @(disp,PC),Rn LS 1 2 #2 - - -

9 MOV.L @(disp,PC),Rn LS 1 2 #2 - - -

10 MOV.B @Rm,Rn LS 1 2 #2 - - -

11 MOV.W @Rm,Rn LS 1 2 #2 - - -

12 MOV.L @Rm,Rn LS 1 2 #2 - - -

13 MOV.B @Rm+,Rn LS 1 1/2 #2 - - -

14 MOV.W @Rm+,Rn LS 1 1/2 #2 - - -

15 MOV.L @Rm+,Rn LS 1 1/2 #2 - - -

16 MOV.B @(disp,Rm),R0 LS 1 2 #2 - - -

17 MOV.W @(disp,Rm),R0 LS 1 2 #2 - - -

18 MOV.L @(disp,Rm),Rn LS 1 2 #2 - - -

19 MOV.B @(R0,Rm),Rn LS 1 2 #2 - - -

20 MOV.W @(R0,Rm),Rn LS 1 2 #2 - - -

21 MOV.L @(R0,Rm),Rn LS 1 2 #2 - - -

22 MOV.B @(disp,GBR),R0 LS 1 2 #3 - - -

23 MOV.W @(disp,GBR),R0 LS 1 2 #3 - - -

Table 75: Execution cycles

506 Execution cycles and pipeline stalling
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Data transfer
instructions

24 MOV.L @(disp,GBR),R0 LS 1 2 #3 - - -

25 MOV.B Rm,@Rn LS 1 1 #2 - - -

26 MOV.W Rm,@Rn LS 1 1 #2 - - -

27 MOV.L Rm,@Rn LS 1 1 #2 - - -

28 MOV.B Rm,@-Rn LS 1 1/1 #2 - - -

29 MOV.W Rm,@-Rn LS 1 1/1 #2 - - -

30 MOV.L Rm,@-Rn LS 1 1/1 #2 - - -

31 MOV.B R0,@(disp,Rn) LS 1 1 #2 - - -

32 MOV.W R0,@(disp,Rn) LS 1 1 #2 - - -

33 MOV.L Rm,@(disp,Rn) LS 1 1 #2 - - -

34 MOV.B Rm,@(R0,Rn) LS 1 1 #2 - - -

35 MOV.W Rm,@(R0,Rn) LS 1 1 #2 - - -

36 MOV.L Rm,@(R0,Rn) LS 1 1 #2 - - -

37 MOV.B R0,@(disp,GBR) LS 1 1 #3 - - -

38 MOV.W R0,@(disp,GBR) LS 1 1 #3 - - -

39 MOV.L R0,@(disp,GBR) LS 1 1 #3 - - -

40 MOVCA.L R0,@Rn LS 1 3-7 #12 MA 4 3-7

41 MOVT Rn EX 1 1 #1 - - -

42 OCBI @Rn LS 1 1-2 #10 MA 4 1-2

43 OCBP @Rn LS 1 1-5 #11 MA 4 1-5

44 OCBWB @Rn LS 1 1-5 #11 MA 4 1-5

45 PREF @Rn LS 1 1 #2 - - -

46 SWAP.B Rm,Rn EX 1 1 #1 - - -

Functional
category

No Instruction
Instruction

group
Issue
rate

Latency
Execution

pattern

Lock

S
ta

g
e

S
ta

rt

C
yc

le
s

Table 75: Execution cycles

Execution cycles and pipeline stalling 507
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Data transfer
instructions

47 SWAP.W Rm,Rn EX 1 1 #1 - - -

48 XTRCT Rm,Rn EX 1 1 #1 - - -

Fixed-point
arithmetic
instructions

49 ADD Rm,Rn EX 1 1 #1 - - -

50 ADD #imm,Rn EX 1 1 #1 - - -

51 ADDC Rm,Rn EX 1 1 #1 - - -

52 ADDV Rm,Rn EX 1 1 #1 - - -

53 CMP/EQ #imm,R0 MT 1 1 #1 - - -

54 CMP/EQ Rm,Rn MT 1 1 #1 - - -

55 CMP/GE Rm,Rn MT 1 1 #1 - - -

56 CMP/GT Rm,Rn MT 1 1 #1 - - -

57 CMP/HI Rm,Rn MT 1 1 #1 - - -

58 CMP/HS Rm,Rn MT 1 1 #1 - - -

59 CMP/PL Rn MT 1 1 #1 - - -

60 CMP/PZ Rn MT 1 1 #1 - - -

61 CMP/STR Rm,Rn MT 1 1 #1 - - -

62 DIV0S Rm,Rn EX 1 1 #1 - - -

63 DIV0U EX 1 1 #1 - - -

64 DIV1 Rm,Rn EX 1 1 #1 - - -

65 DMULS.L Rm,Rn CO 2 4/4 #34 F1 4 2

66 DMULU.L Rm,Rn CO 2 4/4 #34 F1 4 2

67 DT Rn EX 1 1 #1 - - -

68 MAC.L @Rm+,@Rn+ CO 2 2/2/4/4 #35 F1 4 2

69 MAC.W @Rm+,@Rn+ CO 2 2/2/4/4 #35 F1 4 2

Functional
category

No Instruction
Instruction

group
Issue
rate

Latency
Execution

pattern

Lock

S
ta

g
e

S
ta

rt

C
yc

le
s

Table 75: Execution cycles

508 Execution cycles and pipeline stalling
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Fixed-point
arithmetic
instructions

70 MUL.L Rm,Rn CO 2 4/4 #34 F1 4 2

71 MULS.W Rm,Rn CO 2 4/4 #34 F1 4 2

72 MULU.W Rm,Rn CO 2 4/4 #34 F1 4 2

73 NEG Rm,Rn EX 1 1 #1 - - -

74 NEGC Rm,Rn EX 1 1 #1 - - -

75 SUB Rm,Rn EX 1 1 #1 - - -

76 SUBC Rm,Rn EX 1 1 #1 - - -

77 SUBV Rm,Rn EX 1 1 #1 - - -

Logical
instructions

78 AND Rm,Rn EX 1 1 #1 - - -

79 AND #imm,R0 EX 1 1 #1 - - -

80 AND.B #imm,@(R0,GBR) CO 4 4 #6 - - -

81 NOT Rm,Rn EX 1 1 #1 - - -

82 OR Rm,Rn EX 1 1 #1 - - -

83 OR #imm,R0 EX 1 1 #1 - - -

84 OR.B #imm,@(R0,GBR) CO 4 4 #6 - - -

85 TAS.B @Rn CO 5 5 #7 - - -

86 TST Rm,Rn MT 1 1 #1 - - -

87 TST #imm,R0 MT 1 1 #1 - - -

88 TST.B #imm,@(R0,GBR) CO 3 3 #5 - - -

89 XOR Rm,Rn EX 1 1 #1 - - -

90 XOR #imm,R0 EX 1 1 #1 - - -

91 XOR.B #imm,@(R0,GBR) CO 4 4 #6 - - -

Functional
category

No Instruction
Instruction

group
Issue
rate

Latency
Execution

pattern

Lock

S
ta

g
e

S
ta

rt

C
yc

le
s

Table 75: Execution cycles

Execution cycles and pipeline stalling 509
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Shift
instructions

92 ROTL Rn EX 1 1 #1 - - -

93 ROTR Rn EX 1 1 #1 - - -

94 ROTCL Rn EX 1 1 #1 - - -

95 ROTCR Rn EX 1 1 #1 - - -

96 SHAD Rm,Rn EX 1 1 #1 - - -

97 SHAL Rn EX 1 1 #1 - - -

98 SHAR Rn EX 1 1 #1 - - -

99 SHLD Rm,Rn EX 1 1 #1 - - -

100 SHLL Rn EX 1 1 #1 - - -

101 SHLL2 Rn EX 1 1 #1 - - -

102 SHLL8 Rn EX 1 1 #1 - - -

103 SHLL16 Rn EX 1 1 #1 - - -

104 SHLR Rn EX 1 1 #1 - - -

105 SHLR2 Rn EX 1 1 #1 - - -

106 SHLR8 Rn EX 1 1 #1 - - -

107 SHLR16 Rn EX 1 1 #1 - - -

Branch
instructions

108 BF disp BR 1 2 (or 1) #1 - - -

109 BF/S disp BR 1 2 (or 1) #1 - - -

110 BT disp BR 1 2 (or 1) #1 - - -

111 BT/S disp BR 1 2 (or 1) #1 - - -

112 BRA disp BR 1 2 #1 - - -

113 BRAF Rn CO 2 3 #4 - - -

114 BSR disp BR 1 2 #14 SX 3 2

Functional
category

No Instruction
Instruction

group
Issue
rate

Latency
Execution

pattern

Lock

S
ta

g
e

S
ta

rt

C
yc

le
s

Table 75: Execution cycles

510 Execution cycles and pipeline stalling
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Branch
instructions

115 BSRF Rn CO 2 3 #24 SX 3 2

116 JMP @Rn CO 2 3 #4 - - -

117 JSR @Rn CO 2 3 #24 SX 3 2

118 RTS CO 2 3 #4 - - -

System
control
instructions

119 NOP MT 1 0 #1 - - -

120 CLRMAC CO 1 3 #28 F1 3 2

121 CLRS CO 1 1 #1 - - -

122 CLRT MT 1 1 #1 - - -

123 SETS CO 1 1 #1 - - -

124 SETT MT 1 1 #1 - - -

125 TRAPA #imm CO 7 7 #13 - - -

126 RTE CO 5 5 #8 - - -

127 SLEEP CO 4 4 #9 - - -

128 LDTLB CO 1 1 #2 - - -

129 LDC Rm,DBR CO 1 3 #14 SX 3 2

130 LDC Rm,GBR CO 3 3 #15 SX 3 2

131 LDC Rm,Rp_BANK CO 1 3 #14 SX 3 2

132 LDC Rm,SR CO 4 4 #16 SX 3 2

133 LDC Rm,SSR CO 1 3 #14 SX 3 2

134 LDC Rm,SPC CO 1 3 #14 SX 3 2

135 LDC Rm,VBR CO 1 3 #14 SX 3 2

136 LDC.L @Rm+,DBR CO 1 1/3 #17 SX 3 2

137 LDC.L @Rm+,GBR CO 3 3/3 #18 SX 3 2

Functional
category

No Instruction
Instruction

group
Issue
rate

Latency
Execution

pattern

Lock

S
ta

g
e

S
ta

rt

C
yc

le
s

Table 75: Execution cycles

Execution cycles and pipeline stalling 511
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

138 LDC.L @Rm+,Rp_BANK CO 1 1/3 #17 SX 3 2

139 LDC.L @Rm+,SR CO 4 4/4 #19 SX 3 2

140 LDC.L @Rm+,SSR CO 1 1/3 #17 SX 3 2

141 LDC.L @Rm+,SPC CO 1 1/3 #17 SX 3 2

142 LDC.L @Rm+,VBR CO 1 1/3 #17 SX 3 2

143 LDS Rm,MACH CO 1 3 #28 F1 3 2

144 LDS Rm,MACL CO 1 3 #28 F1 3 2

145 LDS Rm,PR CO 2 3 #24 SX 3 2

146 LDS.L @Rm+,MACH CO 1 1/3 #29 F1 3 2

147 LDS.L @Rm+,MACL CO 1 1/3 #29 F1 3 2

148 LDS.L @Rm+,PR CO 2 2/3 #25 SX 3 2

149 STC DBR,Rn CO 2 2 #20 - - -

150 STC SGR,Rn CO 3 3 #21 - - -

151 STC GBR,Rn CO 2 2 #20 - - -

152 STC Rp_BANK,Rn CO 2 2 #20 - - -

153 STC SR,Rn CO 2 2 #20 - - -

154 STC SSR,Rn CO 2 2 #20 - - -

155 STC SPC,Rn CO 2 2 #20 - - -

156 STC VBR,Rn CO 2 2 #20 - - -

157 STC.L DBR,@-Rn CO 2 2/2 #22 - - -

158 STC.L SGR,@-Rn CO 3 3/3 #23 - - -

159 STC.L GBR,@-Rn CO 2 2/2 #22 - - -

160 STC.L Rp_BANK,@-Rn CO 2 2/2 #22 - - -

Functional
category

No Instruction
Instruction

group
Issue
rate

Latency
Execution

pattern

Lock

S
ta

g
e

S
ta

rt

C
yc

le
s

Table 75: Execution cycles

512 Execution cycles and pipeline stalling
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

161 STC.L SR,@-Rn CO 2 2/2 #22 - - -

162 STC.L SSR,@-Rn CO 2 2/2 #22 - - -

163 STC.L SPC,@-Rn CO 2 2/2 #22 - - -

164 STC.L VBR,@-Rn CO 2 2/2 #22 - - -

165 STS MACH,Rn CO 1 3 #30 - - -

166 STS MACL,Rn CO 1 3 #30 - - -

167 STS PR,Rn CO 2 2 #26 - - -

168 STS.L MACH,@-Rn CO 1 1/1 #31 - - -

169 STS.L MACL,@-Rn CO 1 1/1 #31 - - -

170 STS.L PR,@-Rn CO 2 2/2 #27 - - -

Single-
precision
floating-
point
instructions

171 FLDI0 FRn LS 1 0 #1 - - -

172 FLDI1 FRn LS 1 0 #1 - - -

173 FMOV FRm,FRn LS 1 0 #1 - - -

174 FMOV.S @Rm,FRn LS 1 2 #2 - - -

175 FMOV.S @Rm+,FRn LS 1 1/2 #2 - - -

176 FMOV.S @(R0,Rm),FRn LS 1 2 #2 - - -

177 FMOV.S FRm,@Rn LS 1 1 #2 - - -

178 FMOV.S FRm,@-Rn LS 1 1/1 #2 - - -

179 FMOV.S FRm,@(R0,Rn) LS 1 1 #2 - - -

180 FLDS FRm,FPUL LS 1 0 #1 - - -

181 FSTS FPUL,FRn LS 1 0 #1 - - -

182 FABS FRn LS 1 0 #1 - - -

183 FADD FRm,FRn FE 1 3/4 #36 - - -

Functional
category

No Instruction
Instruction

group
Issue
rate

Latency
Execution

pattern

Lock

S
ta

g
e

S
ta

rt

C
yc

le
s

Table 75: Execution cycles

Execution cycles and pipeline stalling 513
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

184 FCMP/EQ FRm,FRn FE 1 2/4 #36 - - -

185 FCMP/GT FRm,FRn FE 1 2/4 #36 - - -

186 FDIV FRm,FRn FE 1 12/13 #37 F3 2 10

F1 11 1

187 FLOAT FPUL,FRn FE 1 3/4 #36 F1 2 2

188 FMAC FR0,FRm,FRn FE 1 3/4 #36 - - -

189 FMUL FRm,FRn FE 1 3/4 #36 - - -

190 FNEG FRn LS 1 0 #1 - - -

191 FSQRT FRn FE 1 11/12 #37 F3 2 9

F1 10 1

192 FSUB FRm,FRn FE 1 3/4 #36 - - -

193 FTRC FRm,FPUL FE 1 3/4 #36 - - -

194 FMOV DRm,DRn LS 1 0 #1 - - -

195 FMOV @Rm,DRn LS 1 2 #2 - - -

196 FMOV @Rm+,DRn LS 1 1/2 #2 - - -

197 FMOV @(R0,Rm),DRn LS 1 2 #2 - - -

198 FMOV DRm,@Rn LS 1 1 #2 - - -

199 FMOV DRm,@-Rn LS 1 1/1 #2 - - -

200 FMOV DRm,@(R0,Rn) LS 1 1 #2 - - -

Double-
precision
floating-
point
instructions

201 FABS DRn LS 1 0 #1 - - -

202 FADD DRm,DRn FE 1 (7, 8)/9 #39 F1 2 6

203 FCMP/EQ DRm,DRn CO 2 3/5 #40 F1 2 2

204 FCMP/GT DRm,DRn CO 2 3/5 #40 F1 2 2

Functional
category

No Instruction
Instruction

group
Issue
rate

Latency
Execution

pattern

Lock

S
ta

g
e

S
ta

rt

C
yc

le
s

Table 75: Execution cycles

514 Execution cycles and pipeline stalling
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

205 FCNVDS DRm,FPUL FE 1 4/5 #38 F1 2 2

206 FCNVSD FPUL,DRn FE 1 (3, 4)/5 #38 F1 2 2

207 FDIV DRm,DRn FE 1 (24, 25)/
26

#41 F3 2 21

F1 20 3

208 FLOAT FPUL,DRn FE 1 (3, 4)/5 #38 F1 2 2

209 FMUL DRm,DRn FE 1 (7, 8)/9 #39 F1 2 6

210 FNEG DRn LS 1 0 #1 - - -

211 FSQRT DRn FE 1 (23, 24)/
25

#41 F3 2 20

F1 19 3

212 FSUB DRm,DRn FE 1 (7, 8)/9 #39 F1 2 6

213 FTRC DRm,FPUL FE 1 4/5 #38 F1 2 2

FPU system
control
instructions

214 LDS Rm,FPUL LS 1 1 #1 - - -

215 LDS Rm,FPSCR CO 1 4 #32 F1 3 3

216 LDS.L @Rm+,FPUL CO 1 1/2 #2 - - -

217 LDS.L @Rm+,FPSCR CO 1 1/4 #33 F1 3 3

218 STS FPUL,Rn LS 1 3 #1 - - -

219 STS FPSCR,Rn CO 1 3 #1 - - -

220 STS.L FPUL,@-Rn CO 1 1/1 #2 - - -

221 STS.L FPSCR,@-Rn CO 1 1/1 #2 - - -

Graphics
acceleration
instructions

222 FMOV DRm,XDn LS 1 0 #1 - - -

223 FMOV XDm,DRn LS 1 0 #1 - - -

224 FMOV XDm,XDn LS 1 0 #1 - - -

Functional
category

No Instruction
Instruction

group
Issue
rate

Latency
Execution

pattern

Lock

S
ta

g
e

S
ta

rt

C
yc

le
s

Table 75: Execution cycles

Execution cycles and pipeline stalling 515
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Note: 1 See Table 73 for the instruction groups.

2 Latency “L1/L2...”: Latency corresponding to a write to each register, including
MACH/MACL/FPSCR.
Example:MOV.B @Rm+, Rn “1/2”: The latency for Rm is 1 cycle, and the latency for
Rn is 2 cycles.

3 Branch latency: Interval until the branch destination instruction is fetched

4 Conditional branch latency “2 (or 1)”: The latency is 2 for a nonzero displacement,
and 1 for a zero displacement.

5 Double-precision floating-point instruction latency “(L1, L2)/L3”: L1 is the latency
for FR [n+1], L2 that for FR [n], and L3 that for FPSCR.

6 FTRV latency “(L1, L2, L3, L4)/L5”: L1 is the latency for FR [n], L2 that for FR
[n+1], L3 that for FR [n+2], L4 that for FR [n+3], and L5 that for FPSCR.

7 Latency “L1/L2/L3/L4” of MAC.L and MAC.W instructions: L1 is the latency for
Rm, L2 that for Rn, L3 that for MACH, and L4 that for MACL.

225 FMOV @Rm,XDn LS 1 2 #2 - - -

226 FMOV @Rm+,XDn LS 1 1/2 #2 - - -

227 FMOV @(R0,Rm),XDn LS 1 2 #2 - - -

228 FMOV XDm,@Rn LS 1 1 #2 - - -

229 FMOV XDm,@-Rm LS 1 1/1 #2 - - -

230 FMOV XDm,@(R0,Rn) LS 1 1 #2 - - -

231 FIPR FVm,FVn FE 1 4/5 #42 F1 3 1

232 FRCHG FE 1 1/4 #36 - - -

233 FSCHG FE 1 1/4 #36 - - -

234 FTRV XMTRX,FVn FE 1 (5, 5, 6,
7)/8

#43 F0 2 4

F1 3 4

Functional
category

No Instruction
Instruction

group
Issue
rate

Latency
Execution

pattern

Lock

S
ta

g
e

S
ta

rt

C
yc

le
s

Table 75: Execution cycles

516 Execution cycles and pipeline stalling
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

8 Latency “L1/L2” of MUL.L, MULS.W, MULU.W, DMULS.L, and DMULU.L
instructions: L1 is the latency for MACH, and L2 that for MACL.

9 Execution pattern: The instruction execution pattern number (see figure 8.2)

10 Lock/stage: Stage locked by the instruction

11 Lock/start: Locking start cycle; 1 is the first D-stage of the instruction.

12 Lock/cycles: Number of cycles locked.

Exceptions:

1 When a floating-point computation instruction is followed by an FMOV store, an
STS FPUL, Rn instruction, or an STS.L FPUL, @-Rn instruction, the latency of
the floating-point computation is decreased by 1 cycle.

2 When the preceding instruction loads the shift amount of the following SHAD/
SHLD, the latency of the load is increased by 1 cycle.

3 When an LS group instruction with a latency of less than 3 cycles is followed by
a double-precision floating-point instruction, FIPR, or FTRV, the latency of the
first instruction is increased to 3 cycles.

Example:In the case of FMOV FR4,FR0 and FIPR FV0,FV4, FIPR is stalled for 2
cycles.

4 When MAC*/MUL*/DMUL* is followed by an STS.L MAC*, @-Rn instruction,
the latency of MAC*/MUL*/DMUL* is 5 cycles.

5 In the case of consecutive executions of MAC*/MUL*/DMUL*, the latency is
decreased to 2 cycles.

6 When an LDS to MAC* is followed by an STS.L MAC*, @-Rn instruction, the
latency of the LDS to MAC* is 4 cycles.

7 When an LDS to MAC* is followed by MAC*/MUL*/DMUL*, the latency of the
LDS to MAC* is 1 cycle.

8 When an FSCHG or FRCHG instruction is followed by an LS group instruction
that reads or writes to a floating-point register, the aforementioned LS group
instruction[s] cannot be executed in parallel.

9 When a single-precision FTRC instruction is followed by an STS FPUL, Rn
instruction, the latency of the single-precision FTRC instruction is 1 cycle.

PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

AAddress list

Module Register P4 address
Area 7

addressa Size
Power-on

reset
Manual
reset

Sleep Standby
Sync
clock

CCN PTEH 0xFF00 0000 0x1F00 0000 32 0x0000 0000 0x0000 0000 Held Held Iclk

CCN PTEL 0xFF00 0004 0x1F00 0004 32 0x0000 0000 0x0000 0000 Held Held Iclk

CCN TTB 0xFF00 0008 0x1F00 0008 32 0x0000 0000 0x0000 0000 Held Held Iclk

CCN TEA 0xFF00 000C 0x1F00 000C 32 0x0000 0000 0x0000 0000 Held Held Iclk

CCN MMUCR 0xFF00 0010 0x1F00 0010 32 0x0000 0000 0x0000 0000 Held Held Iclk

CCN BASRA 0xFF00 0014 0x1F00 0014 8 Undefined Held Held Held Iclk

CCN BASRB 0xFF00 0018 0x1F00 0018 8 Undefined Held Held Held Iclk

CCN CCR 0xFF00 001C 0x1F00 001C 32 0x0000 0000 0x0000 0000 Held Held Iclk

CCN TRA 0xFF00 0020 0x1F00 0020 32 0x0000 0000 0x0000 0000 Held Held Iclk

CCN EXPEVT 0xFF00 0024 0x1F00 0024 32 0x0000 0000 0x0000 0020 Held Held Iclk

CCN INTEVT 0xFF00 0028 0x1F00 0028 32 0x0000 0000 Held Held Held Iclk

CCN QACR0 0xFF00 0038 0x1F00 0038 32 Undefined Undefined Held Held Iclk

CCN QACR1 0xFF00 003C 0x1F00 003C 32 Undefined Undefined Held Held Iclk

UBC BARA 0xFF20 0000 0x1F20 0000 32 Undefined Held Held Held Iclk

UBC BAMRA 0xFF20 0004 0x1F20 0004 8 Undefined Held Held Held Iclk

Table 76: Address list

518
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Note: The address map for peripheral devices is contained in the system manual for the
part.

a. With control registers, the above addresses in the physical page number field can be
accessed by means of a TLB setting. When these addresses are referenced directly
without using the TLB, operations are limited.

PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

BInstruction
prefetch side
effects

The SH-4 is provided with an internal buffer for holding pre-read instructions, and
always performs pre-reading. Therefore, program code must not be located in the
last 20-byte area of any memory space. If program code is located in these areas, the
memory area will be exceeded and a bus access for instruction pre-reading may be
initiated. A case in which this is a problem is shown below.

Table 77 illustrates a case in which the instruction (ADD) indicated by the program
counter (PC) and the address 0x0400002 instruction prefetch are executed
simultaneously. Note that the program branches to an area outside Area 1 after
executing the following JMP instruction and delay slot instruction.

In this case, the program flow is unpredictable, and a bus access (instruction
prefetch) to Area 1 may be initiated.

Address

0x03FFFFF8 ADD R1,R4 PC (program counter)

0x03FFFFFA JMP @R2

Area 0 0x03FFFFFC NOP

0x03FFFFFE NOP

Area 1 0x040000000

0x40000002 Instruction prefetch address

Table 77: Example

520
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

Instruction prefetch side effects

1 It is possible that an external bus access caused by an instruction prefetch may
result in misoperation of an external device, such as a FIFO, connected to the
area concerned.

2 If there is no device to reply to an external bus request caused by an instruction
prefetch, hangup will occur.

Remedies

1 These illegal instruction fetches can be avoided by using the MMU.

2 The problem can be avoided by not locating program code in the last 20 bytes of
any area.

PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

Index

A
ADD 213, 218-219, 265
ADDC 220
ADDV 221
AND 190, 203-205, 222-224
AND.B 224

B
Backus-Naur Form 15
BF 225, 227
BNF. See Backus-naur Form.
BRA 229
BRAF 230
BREAK 231
BRK 231
BSR 213, 232
BSRF 213, 234
BT 235, 237

C
CMPGT 271

D
DIV0S 251
DIV1 253

DMULS.L 254
DMULU.L 255
DT 256

E
ELSE 196
EXTS.B 257
EXTS.W 258
EXTU.B 259
EXTU.W 260

F
FABS 261-262
FABS.D 208
FABS.S 208
FADD 215, 263-265
FADD.D 208
FADD.S 208
FCMPEQ.D 209
FCMPEQ.S 209
FCMPGT.D 209
FCMPGT.S 209
FCNV.DS 209
FCNV.SD 209
FCNVDS 272, 274

522
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

FCNVSD 273-274
FDIV 275-277
FDIV.D 208
FDIV.S 208
FIPR 279-280, 282
FIPR.S 210, 280
FLDI 284-285
FLDS 283
FLOAT 286-288
FLOAT.LD 209
FLOAT.LS 209
FMAC 289
FMAC.S 209, 290-291
FMOV 294-297, 299-302, 304-308,

310-319
FMOV.S 300-302, 304, 314-316
FMUL 320-322
FMUL.D 208
FMUL.S 208
FNEG 323-324
FNEG.D 209
FNEG.S 209
FOR 188-189, 192, 196, 200, 203, 205
FPU 198, 207, 265, 268, 271, 274, 277,

280-281, 288, 290, 322, 329, 333,
335-336, 338-339

FPUDIS 261-264, 266-267, 269-270,
272-273, 275-276, 280, 283-287, 289,
294-296, 298-301, 303-307, 309-321,
323-328, 330-332, 334-335, 338,
357-360, 463-466

FPUEXC 216
FPUL 198, 272-273, 283, 286-288, 330,

334-335, 359-360, 465-466
FROM 196
FSQRT 327-329
FSQRT.D 209
FSQRT.S 209

FSTS 330
FSUB 331-333
FSUB.D 208
FSUB.S 208
FTRC 334-335
FTRC.DL 209
FTRC.SL 209
FTRV 337-338, 340
FTRV.S 210, 338
Function

Bit(i) 192
DataAccessMiss(address) 201, 204
ExecuteProhibited(address) 201
FABS_D 208
FABS_S 208
FADD_D 208
FADD_S 208, 216
FCMPEQ_D 209
FCMPEQ_S 209
FCMPGT_D 209
FCMPGT_S 209
FCNV_DS 209
FCNV_SD 209
FDIV_D 208
FDIV_S 208
FIPR_S 210
FLOAT_LD 209
FLOAT_LS 209
FloatRegister32(i) 193
FloatRegister64(i) 193
FloatRegisterMatrix32(a) 193
FloatRegisterPair32(a) 193
FloatRegisterVector32(a) 193
FloatValue32(r) 193
FloatValue64(r) 193
FloatValueMatrix32(r) 193
FloatValuePair32(r) 193
FloatValueVector32(r) 193
FMAC_S 209
FMUL_D 208
FMUL_S 208

523
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

FNEG_D 209
FNEG_S 209
FpuCauseE() 207
FpuCauseI() 207
FpuCauseO() 207
FpuCauseU() 207
FpuCauseV() 207
FpuCauseZ() 207
FpuEnableI() 207
FpuEnableO() 207
FpuEnableU() 207
FpuEnableV() 207
FpuEnableZ() 207
FpuFlagI() 207
FpuFlagO() 207
FpuFlagU() 207
FpuFlagV() 207
FpuFlagZ() 207
FpuIsDisabled() 207
FSQRT_D 209
FSQRT_S 209
FSUB_D 208
FSUB_S 208
FTRC_DL 209
FTRC_SL 209
FTRV_S 210
InstFetchMiss(address) 201
InstInvalidateMiiss(address) 201
IsLittleEndian() 202
MalformedAddress(address) 201,

203-205
MMU() 201, 203-205
OCBI(address) 206
OCBP(address) 206
OCBWB(address) 206
PrefetchMemory(address) 204
PREFO(address) 204, 206
ReadMemoryLown(address) 204
ReadMemoryn(address) 202-203
ReadMemoryPairn(address) 202-203
ReadProhibited(address) 201, 203-204
Register(i) 192

SignExtendn(i) 191
WriteControlRegister(index, value) 205
WriteMemoryLown(address, value) 205
WriteMemoryn(address, value) 204-205
WriteMemoryPairn(address, value)

204-205
WriteProhibited(address) 201, 205
ZeroExtendn(i) 191

I
IADDERR 230, 234
IF 196, 203-205, 216
ILLSLOT 212-213, 225-227, 229-230,

232, 234-237, 341-342, 394, 405, 407,
429, 431, 446, 479

INT 190
ISA 211-212, 230, 234, 342

J
JMP 341
JSR 213, 342

L
LDC 343-356, 447-453
LDC.L 344, 350-356
LDS 213, 352, 357-366
LDS.L 358, 360, 362, 364, 366

M
MAC.L 369
MAC.W 371
MACH 198, 239, 254-255, 361-362, 369,

371, 411-413, 467-468
MACL 198, 239, 254-255, 363-364, 369,

371, 411-413, 469-470
MD 198
MEM 199-200, 203, 205
MMU 201-205

524
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

MOV 373-406
MOV.B 375-384
MOV.L 385-395
MOV.W 396-406
MOVA 407
MOVCA.L 408
MOVT 410
MUL.L 411
MULS.W 412
MULU.W 413

N
NEG 414
NEGC 415
NOT 190, 204, 417

O
OCBI 206, 418
OCBP 206, 419
OCBWB 206, 420
OR 190, 203, 205, 421-423
OR.B 423

P
P0 208-210
PC 198-199, 211-213, 225, 227, 229-230,

232, 234-235, 237, 394, 405, 407
PR 198, 211-213, 232, 234, 342,

365-366, 431, 471-472
PREF 424
PREFO 204, 206

R
RADDERR 203
READPROT 203
Register

DR 199

FPSCR 198, 206-210, 216, 263-265,
267, 270, 272-277, 280, 286-287,
289-290, 320-322, 325-329,
331-335, 338-339, 357-358,
463-464

FPSCR.CAUSE.E 207
FPSCR.CAUSE.I 207
FPSCR.CAUSE.O 207
FPSCR.CAUSE.U 207
FPSCR.CAUSE.V 207
FPSCR.CAUSE.Z 207
FPSCR.DN 265, 267, 270, 274, 277,

280, 290, 322, 329, 333, 335,
338-339

FPSCR.ENABLE.I 207
FPSCR.ENABLE.O 207
FPSCR.ENABLE.U 207
FPSCR.ENABLE.V 207
FPSCR.ENABLE.Z 207
FPSCR.FLAG.I 207
FPSCR.FLAG.O 207
FPSCR.FLAG.U 207
FPSCR.FLAG.V 207
FPSCR.FLAG.Z 207
FPSCR.FR 325
FPSCR.RM 263-264, 272-273,

275-276, 286-287, 289, 320-321,
327-328, 331-332, 334-335

FPSCR.SZ 326
FR 289, 325
GBR 198, 224, 343-356, 378, 383, 388,

393, 399, 404, 423, 447-462, 482,
485

MTRX 199
R 223-224, 243, 299, 304, 310, 313,

316, 319, 377-379, 382-384,
387-388, 392-393, 398-400,
403-404, 406-408, 422-423,
481-482, 484-485

Rm 218, 220-222, 242, 244-247,
250-251, 253-255, 257-260,
311-319, 343-366, 369, 371, 373,

525
PRELIMINARY DATA

SuperH, Inc. Confidential
04-CC-10001 V1.0 SH-4 CPU Core Architecture

375-377, 380-382, 384-387,
389-392, 395-398, 400-403, 406,
411-415, 417, 421, 434, 437,
447-453, 473-477, 480, 483, 486

SR 198, 206-207
SR.FD 207

REPEAT 196
ROTCL 425
ROTCR 426
ROTL 427
ROTR 428
RTLBMISS 203

S
SHAD 434
SHAL 435
SHAR 436
SHLD 437
SHLL 438-441
SHLR 442-446
SLEEP 205-206
SLOTFPUDIS 261-264, 266-267,

269-270, 272-273, 275-276, 280,
283-287, 289, 294-296, 298-301,
303-307, 309-321, 323-328, 330-332,
334, 338, 357-360, 463-466

STC 454-462
STC.L 454-460, 462
STEP 196
STS 213, 463-472
STS.L 464, 466, 468, 470, 472

SUB 333, 473
SUBC 474
SUBV 475
SuperH SH-Series

documentation suite
notation 15

SWAP.B 476
SWAP.W 477
SZ 326

T
TAS.B 478
The appendix 519
THROW 197, 203, 205, 216
TRAPA 479
TST 480-482
TST.B 482

U
UNDEFINED 194-195

W
WRITEPROT 205
WTLBMISS 205

XYZ
XMTRX 337-338
XOR 190, 483-485
XOR.B 485
XTRCT 486

526
PRELIMINARY DATA

SuperH, Inc. Confidential
SH-4 CPU Core Architecture 04-CC-10001 V1.0

	Preface
	SuperH SH-4 document identification and control
	Conventions used in this guide

	Overview
	1.1 SH-4 CPU core features
	1.2 Block diagram

	Programming model
	2.1 General registers
	2.2 System registers
	2.3 Control registers�
	2.4 Floating-point registers
	2.5 Memory-mapped registers
	2.6 Data format in registers
	2.7 Data formats in memory
	2.8 Processor states
	2.8.1 Reset state:
	2.8.2 Exception-handling state:
	2.8.3 Program execution state:
	2.8.4 Power-down state:

	2.9 Processor modes

	Memory management unit (MMU)
	3.1 Overview
	3.2 Role of the MMU
	3.3 Register descriptions
	3.3.1 Page table entry high register (PTEH)
	3.3.2 Page table entry low register (PTEL)
	3.3.3 Translation table base register (TTB)
	3.3.4 TLB exception address register (TEA)
	3.3.5 MMU control register (MMUCR)

	3.4 Address space
	3.4.1 Physical address space
	3.4.2 External memory space
	3.4.3 Virtual address space
	3.4.4 On-chip RAM space
	3.4.5 Address translation
	3.4.6 Single virtual memory mode and multiple virtual memory mode
	3.4.7 Address space identifier (ASID)

	3.5 TLB functions
	3.5.1 Unified TLB (UTLB) configuration
	3.5.2 Instruction TLB (ITLB) configuration
	3.5.3 Address translation method

	3.6 MMU functions
	3.6.1 MMU hardware management
	3.6.2 MMU software management
	3.6.3 MMU instruction (LDTLB)
	3.6.4 Hardware ITLB miss handling
	3.6.5 Avoiding synonym problems

	3.7 Handling MMU exceptions
	3.7.1 ITLBMULTIHIT
	3.7.2 ITLBMISS
	3.7.3 EXECPROT
	3.7.4 OTLBMULTIHIT
	3.7.5 TLBMISS
	3.7.6 READPROT
	3.7.7 FIRSTWRITE

	3.8 Memory-mapped TLB configuration
	3.8.1 ITLB address array
	3.8.2 ITLB data array 1
	3.8.3 UTLB address array
	3.8.4 UTLB data array 1

	Caches
	4.1 Overview
	4.1.1 Features

	4.2 Register descriptions
	4.2.1 Cache control register (CCR)
	4.2.2 Queue address control register 0 (QACR0)
	4.2.3 Queue address control register 1 (QACR1)

	4.3 Operand cache (OC)
	4.3.1 Configuration
	4.3.2 Read operation
	4.3.3 Write operation
	4.3.4 Write-back buffer
	4.3.5 Write-through buffer
	4.3.6 RAM mode
	4.3.7 OC index mode
	4.3.8 Coherency between cache and external memory
	4.3.9 Prefetch operation

	4.4 Instruction cache (IC)
	4.4.1 Configuration
	4.4.2 Read operation
	4.4.3 IC index mode

	4.5 Memory-mapped cache configuration
	4.5.1 IC address array
	4.5.4 IC data array
	4.5.5 OC address array
	4.5.6 OC data array

	4.6 Store queues
	4.6.1 SQ configuration
	4.6.2 SQ writes
	4.6.3 SQ reads (SH4-202 only)
	4.6.4 Transfer to external memory

	Exceptions
	5.1 Overview
	5.2 Register descriptions
	5.2.1 Exception event register (EXPEVT)
	5.2.2 Interrupt event register (INTEVT)
	5.2.3 TRAPA exception register (TRA)

	5.3 Exception handling functions
	5.3.1 Exception handling flow
	5.3.2 Exception handling vector addresses

	5.4 Exception types and priorities
	5.5 Exception flow
	5.5.1 Exception flow
	5.5.2 Exception source acceptance
	5.5.3 Exception requests and BL bit
	5.5.4 Return from exception handling

	5.6 Description of exceptions
	5.6.1 Resets
	5.6.2 General exceptions
	5.6.3 Interrupts
	5.6.4 Priority order with multiple exceptions

	5.7 Usage notes

	Floating-point unit
	6.1 Overview
	6.2 Floating-point format
	6.2.1 Non-numbers (NaN)
	6.2.2 Denormalized numbers

	6.3 Rounding
	6.4 Floating-point exceptions
	6.5 Graphics support functions
	6.5.1 Geometric operation instructions
	6.5.2 Pair single-precision data transfer

	Instruction set
	7.1 Execution environment
	7.2 Addressing modes
	7.3 Instruction set summary

	Instruction specification
	8.1 Overview
	8.2 Variables and types
	8.2.1 Integer
	8.2.2 Boolean
	8.2.3 Bit-fields
	8.2.4 Arrays
	8.2.5 Floating point values

	8.3 Expressions
	8.3.1 Integer arithmetic operators
	8.3.2 Integer shift operators
	8.3.3 Integer bitwise operators
	8.3.4 Relational operators
	8.3.5 Boolean operators
	8.3.6 Single-value functions

	8.4 Statements
	8.4.1 Undefined behavior
	8.4.2 Assignment
	8.4.3 Conditional
	8.4.4 Repetition
	8.4.5 Exceptions
	8.4.6 Procedures

	8.5 Architectural state
	8.6 Memory model
	8.6.1 Support functions
	8.6.2 Reading memory
	8.6.3 Prefetching memory
	8.6.4 Writing memory

	8.7 Cache model
	8.8 Floating-point model
	8.8.1 Functions to access SR and FPSCR
	8.8.2 Functions to model floating-point behavior
	8.8.3 Floating-point special cases and exceptions

	8.9 Abstract sequential model
	8.9.1 Initial conditions
	8.9.2 Instruction execution loop
	8.9.3 State changes

	8.10 Example instructions
	8.10.1 ADD #imm, Rn
	8.10.2 FADD FRm, FRn

	Instruction descriptions
	9.1 Alphabetical list of instructions
	ADD Rm, Rn
	ADD #imm, Rn
	ADDC Rm, Rn
	ADDV Rm, Rn
	AND Rm, Rn
	AND #imm, R0
	AND.B #imm, @(R0, GBR)
	BF label
	BF/S label
	BRA label
	BRAF Rn
	BRK
	BSR label
	BSRF Rn
	BT label
	BT/S label
	CLRMAC
	CLRS
	CLRT
	CMP/EQ Rm, Rn
	CMP/EQ #imm, R0
	CMP/GE Rm, Rn
	CMP/GT Rm, Rn
	CMP/HI Rm, Rn
	CMP/HS Rm, Rn
	CMP/PL Rn
	CMP/PZ Rn
	CMP/STR Rm, Rn
	DIV0S Rm, Rn
	DIV0U
	DIV1 Rm, Rn
	DMULS.L Rm, Rn
	DMULU.L Rm, Rn
	DT Rn
	EXTS.B Rm, Rn
	EXTS.W Rm, Rn
	EXTU.B Rm, Rn
	EXTU.W Rm, Rn
	FABS DRn
	FABS FRn
	FADD DRm, DRn
	FADD FRm, FRn
	FCMP/EQ DRm, DRn
	FCMP/EQ FRm, FRn
	FCMP/GT DRm, DRn
	FCMP/GT FRm, FRn
	FCNVDS DRm, FPUL
	FCNVSD FPUL, DRn
	FDIV DRm, DRn
	FDIV FRm, FRn
	FIPR FVm, FVn
	FLDS FRm, FPUL
	FLDI0 FRn
	FLDI1 FRn
	FLOAT FPUL, DRn
	FLOAT FPUL, FRn
	FMAC FR0, FRm, FRn
	FMOV DRm, DRn
	FMOV DRm, XDn
	FMOV DRm, @Rn
	FMOV DRm, @-Rn
	FMOV DRm, @(R0, Rn)
	FMOV.S FRm, FRn
	FMOV.S FRm, @Rn
	FMOV.S FRm, @-Rn
	FMOV.S FRm, @(R0, Rn)
	FMOV XDm, DRn
	FMOV XDm, XDn
	FMOV XDm, @Rn
	FMOV XDm, @-Rn
	FMOV XDm, @(R0, Rn)
	FMOV @Rm, DRn
	FMOV @Rm+, DRn
	FMOV @(R0, Rm), DRn
	FMOV.S @Rm, FRn
	FMOV.S @Rm+, FRn
	FMOV.S @(R0, Rm), FRn
	FMOV @Rm, XDn
	FMOV @Rm+, XDn
	FMOV @(R0, Rm), XDn
	FMUL DRm, DRn
	FMUL FRm, FRn
	FNEG DRn
	FNEG FRn
	FRCHG
	FSCHG
	FSQRT DRn
	FSQRT FRn
	FSTS FPUL, FRn
	FSUB DRm, DRn
	FSUB FRm, FRn
	FTRC DRm, FPUL
	FTRC FRm, FPUL
	FTRV XMTRX, FVn
	JMP @Rn
	JSR @Rn
	LDC Rm, GBR
	LDC Rm, SR
	LDC Rm, VBR
	LDC Rm, SSR
	LDC Rm, SPC
	LDC Rm, DBR
	LDC Rm, Rn_BANK
	LDC.L @Rm+, GBR
	LDC.L @Rm+, SR
	LDC.L @Rm+, VBR
	LDC.L @Rm+, SSR
	LDC.L @Rm+, SPC
	LDC.L @Rm+, DBR
	LDC.L @Rm+, Rn_BANK
	LDS Rm, FPSCR
	LDS.L @Rm+, FPSCR
	LDS Rm, FPUL
	LDS.L @Rm+, FPUL
	LDS Rm, MACH
	LDS.L @Rm+, MACH
	LDS Rm, MACL
	LDS.L @Rm+, MACL
	LDS Rm, PR
	LDS.L @Rm+, PR
	LDTLB
	MAC.L @Rm+, @Rn+
	MAC.W @Rm+, @Rn+
	MOV Rm, Rn
	MOV #imm, Rn
	MOV.B Rm, @Rn
	MOV.B Rm, @-Rn
	MOV.B Rm, @(R0, Rn)
	MOV.B R0, @(disp, GBR)
	MOV.B R0, @(disp, Rn)
	MOV.B @Rm, Rn
	MOV.B @Rm+, Rn
	MOV.B @(R0, Rm), Rn
	MOV.B @(disp, GBR), R0
	MOV.B @(disp, Rm), R0
	MOV.L Rm, @Rn
	MOV.L Rm, @-Rn
	MOV.L Rm, @(R0, Rn)
	MOV.L R0, @(disp, GBR)
	MOV.L Rm, @(disp, Rn)
	MOV.L @Rm, Rn
	MOV.L @Rm+, Rn
	MOV.L @(R0, Rm), Rn
	MOV.L @(disp, GBR), R0
	MOV.L @(disp, PC), Rn
	MOV.L @(disp, Rm), Rn
	MOV.W Rm, @Rn
	MOV.W Rm, @-Rn
	MOV.W Rm, @(R0, Rn)
	MOV.W R0, @(disp, GBR)
	MOV.W R0, @(disp, Rn)
	MOV.W @Rm, Rn
	MOV.W @Rm+, Rn
	MOV.W @(R0, Rm), Rn
	MOV.W @(disp, GBR), R0
	MOV.W @(disp, PC), Rn
	MOV.W @(disp, Rm), R0
	MOVA @(disp, PC), R0
	MOVCA.L R0, @Rn
	MOVT Rn
	MUL.L Rm, Rn
	MULS.W Rm, Rn
	MULU.W Rm, Rn
	NEG Rm, Rn
	NEGC Rm, Rn
	NOP
	NOT Rm, Rn
	OCBI @Rn
	OCBP @Rn
	OCBWB @Rn
	OR Rm, Rn
	OR #imm, R0
	OR.B #imm, @(R0, GBR)
	PREF @Rn
	ROTCL Rn
	ROTCR Rn
	ROTL Rn
	ROTR Rn
	RTE
	RTS
	SETS
	SETT
	SHAD Rm, Rn
	SHAL Rn
	SHAR Rn
	SHLD Rm, Rn
	SHLL Rn
	SHLL2 Rn
	SHLL8 Rn
	SHLL16 Rn
	SHLR Rn
	SHLR2 Rn
	SHLR8 Rn
	SHLR16 Rn
	SLEEP
	STC SR, Rn
	STC VBR, Rn
	STC SSR, Rn
	STC SPC, Rn
	STC SGR, Rn
	STC DBR, Rn
	STC Rm_BANK, Rn
	STC.L SR, @-Rn
	STC.L VBR, @-Rn
	STC.L SSR, @-Rn
	STC.L SPC, @-Rn
	STC.L SGR, @-Rn
	STC.L DBR, @-Rn
	STC.L Rm_BANK, @-Rn
	STC GBR, Rn
	STC.L GBR, @-Rn
	STS FPSCR, Rn
	STS.L FPSCR, @-Rn
	STS FPUL, Rn
	STS.L FPUL, @-Rn
	STS MACH, Rn
	STS.L MACH, @-Rn
	STS MACL, Rn
	STS.L MACL, @-Rn
	STS PR, Rn
	STS.L PR, @-Rn
	SUB Rm, Rn
	SUBC Rm, Rn
	SUBV Rm, Rn
	SWAP.B Rm, Rn
	SWAP.W Rm, Rn
	TAS.B @Rn
	TRAPA #imm
	TST Rm, Rn
	TST #imm, R0
	TST.B #imm, @(R0, GBR)
	XOR Rm, Rn
	XOR #imm, R0
	XOR.B #imm, @(R0, GBR)
	XTRCT Rm, Rn

	Pipelining
	10.1 Pipelines
	10.2 Parallel-executability
	10.3 Execution cycles and pipeline stalling

	Address list
	Instruction prefetch side effects
	Index

